
A q-SDH-based Graph Signature Scheme on
Full-Domain Messages with E�cient Protocols

Syh-Yuan Tan, Ioannis Sfyrakis, and Thomas Groß

Newcastle University, Newcastle upon Tyne, United Kingdom
{syh-yuan.tan, ioannis.sfyrakis, thomas.gross}@newcastle.ac.uk

Abstract. A graph signature scheme is a digital signature scheme that
allows a recipient to obtain a signature on a graph and subsequently prove
properties thereof in zero-knowledge proofs of knowledge. While known
to be expressive enough to encode statements from NP languages, one
main use of graph signatures is in topology certification and confidentiality-
preserving security assurance. In this paper, we present an e�cient and
provably secure graph signature scheme in the standard model with tight
reduction. Based on the MoniPoly attribute-based credential system, this
new graph signature scheme o↵ers zero-knowledge proofs of possession
of the signature itself as well as confidentiality-preserving show proofs on
logical statements such as the existence of vertices, graph connectivity
or isolation.

1 Introduction

A graph signature scheme is digital signature scheme that operates on a mes-
sage space of graphs G and o↵ers e�cient proof protocols to assert graph prop-
erties, such as connectivity or isolation, in Zero-Knowledge Proofs of Knowl-
edge (ZKPoK) while maintaining confidentiality of further information on the
the structure or labeling of the graph itself. Given the versatility of graphs as
a data structure, graph signatures are an interesting public-key cryptography
primitive for a range of applications, including confidentiality-preserving secu-
rity assurance, that is, the certification and attestation of topologies of systems
of computer systems, first realized as part of cloud security and privacy assur-
ance e↵orts [17]. Further applications on, for example, social network graphs,
state machines, or provenance graphs have been proposed.

While ZKPoK on graphs have been instrumental in the first zero-knowledge
proof constructions [6, 16] and transitive signature schemes operating on graph
edges have been proposed earlier [23, 2], the first graph signature scheme with a
framework of e�cient proof protocols was proposed by Groß [18, 19]. This first
construction was founded on the SRSA-based Camenisch-Lysyanskaya (CL) sig-
nature scheme [11], provably secure in the standard model. The CL signature can
be extended to sign multiple messages without increasing the signature size and
has been the core engine for attribute-based anonymous credential (ABC) sys-
tems, such as IBM’s Identity Mixer [20]. Camenisch and Groß (CG) established a
prime encoding [9, 10] to enhance the e�ciency of the CL-RSA signature scheme

This is the authors’ copy of this work submitted to the IACR ePrint Archive, 2020/1403, 2020.

by rendering the messages as prime exponents. Exploiting the coprimality and
non-divisibility of the prime numbers, they showed that the encoded signature
can be used to construct a highly e�cient ABC system to provide e�cient zero-
knowledge proofs for AND, OR, and NOT/NAND logical statements.

Groß [18] extended the CG-ABC system into a graph signature scheme which
can sign the vertices and edges of a labeled graph in the prime encoded form,
while rendering the graph’s algebraic structure accessible to subsequent ZKPoK.
Apart from providing zero-knowledge proofs on a grammar of graph predi-
cates [19], the graph signature also supports joint graph issuing protocol that
allows the issuer to combine a graph of its choice with recipient’s hidden graph
during the signing protocol. This allows a recipient to source di↵erent graphs
from multiple signers, a feature enabling confidentiality-preserving bootstrap-
ping of signatures on complex graphs. Furthermore, Groß [18] proved the graph
signature scheme’s capability to encode and e�ciently prove graph 3-colorability
implying expressivity in terms of arbitrary statements from NP-languages. Due
to these useful features, the graph signature was adopted in the realization of
topology certification and infrastructure auditing applications [17]. While the
scheme o↵ers useful features, Groß’ original construction of the graph signature
scheme retains shortcomings that have yet to be addressed: (i) the message
space is restricted to prime numbers, (ii) the encoding needs to be pre-certified,
entailing large public keys, (iii) the scheme largely relies on properties inherited
from the underlying CL- and CG- schemes [11, 10] and lacks a rigorous secu-
rity model of the overall proof system. In terms of research gap, the existing
SRSA graph signature construction su↵ers from complex show proofs, where
the underlying quadratic-residue special RSA group setup leads to considerable
computational and message complexity.

Our Contribution. We propose the first graph signature scheme with e�cient
protocols based on an elliptic-curve group setup. To that end, we establish a
new variant of MoniPoly set commitment scheme [28, 29] that achieves the same
e�ciency and security as that of the original scheme, while being conducive to
encoding graph data structures and proving of their well-formedness. Based on
MoniPoly ABC system, we then construct a new graph signature scheme which is
provably secure in the standard model with a tight security reduction under the
q-SDH assumption. In contrast to Groß’ SRSA-based construction [18, 19], our
novel graph signature scheme (i) enables graph encoding on arbitrary strings,
not just prime numbers, (ii) supports the same expressive range of predicates
with shorter proofs, (iii) features rigorous security analysis with respect to gen-
eral impersonation resilience and unlinkability security requirements.

Organization. §2 introduces the related work to our solution. After listing the
preliminaries in §3, we explain in §4 the MoniPoly graph encoding, the SDH-
counterpart for Groß’ SRSA-based prime graph encoding. We present the pro-
posed graph signature scheme in §6 and an e�cient zero-knowledge proof system
for set and graph predicates in §7. §9 evaluates the computational complexity,

2

compares asymptotically with the original graph signature scheme by Groß, and
details the performance experiments on our implementation.

2 Related Works

Recently, Tan and Groß proposed an e�cient ABC system with expressive show
proofs, called MoniPoly [28, 29]. By design, MoniPoly ABC bears a number of
similarities to the Camenisch-Groß-ABC [9, 10]. For instance, MoniPoly ABC is
built on CL-SDH signature scheme [12, 1, 26], the pairing counterpart of CL-RSA
signature scheme [11]. Moreover, MoniPoly ABC features an encoding function
that converts an attributes into non-dividable values in Z⇤

p
.

By extending the MoniPoly ABC system’s attribute space to an appropriate
graph encoding, it can yield a graph signature scheme, in principle. The main
technical di�culty in achieving this is to establish the graph data structure in
the credential. Groß’ graph signature scheme [18] achieves this ability by creating
an unambiguous encoding for a graph data set. The graph prime encoding then
yields the capability to produce a graph well-formedness proof to assure the
signed hidden graph is correctly encoded. Unfortunately, the original MoniPoly
ABC cannot achieve the graph well-formedness in the same way, because the
opening value and the graph data set share the same domain. For instance, a
dishonest user can cheat by encoding two vertices i, j and their edge (i, j) as:

C = a
(x0+oi)(x

0+i)
i

a
(x0+oj)(x

0+i)
j

a
(x0+o(i,j))(x

0+i)(x0+j)

(i,j) mod p

in a MoniPoly commitment where the opening values oi, oj , o(i,j) are chosen
from the vertex universe. A naive solution might ask the user to compute a NOT

proof with respect to the vertex identifier and labels universes for each opening
value during every show proofs. This naive approach, however, would create a
forbidding overhead and yield an impractical graph signature scheme.

Another related research area is the authenticated data structure [24, 13, 30]
(ADS) which allows a data owner to outsource computations to a server, requir-
ing the operations to be verifiable. Since ADS can be viewed as a database, it
has been adopted to realize verifiable computation of database queries, particu-
larly in the graph and relational databases [31, 22, 32]. For instance, the graph
database constructed by Mandal et al. [22] supports query for meta-data, similar
to proving the relationships among vertices in a graph signature scheme. How-
ever, the application scenario of databases from ADS require the data owners
to disclose their data to the database server. Thereby, they enable the database
server to answer the clients’ queries on behalf of the data owners.

The scenario and security requirements for a graph signature scheme, how-
ever, are di↵erent: It requires information about the graph beyond the predicates
proven to stay confidential. The owner of a graph signature, hence, responds to
a verifier’s queries on his own, using the signature of his committed graph as
secret input.

3

3 Preliminaries

Definition 1. Discrete Logarithm Assumption (DLOG). An algorithm C is said
to (tdlog, "dlog)-break the DLOG assumption if C runs in time at most tdlog and
furthermore:

Pr[x 2 Zp : C(g, gx) = x] � "dlog

for a negligible probability "dlog. We say that the DLOG assumption is (tdlog, "dlog)-
secure if no algorithm (tdlog, "dlog)-solves the DLOG problem.

Definition 2. co-Discrete Logarithm Assumption (co-DLOG) [14]. An algo-
rithm C is said to (tcodlog, "codlog)-break the co-DLOG assumption if C runs in
time at most tcodlog and furthermore:

Pr[x 2 Zp : C(g1, gx1 2 G1, g2, g
x

2 2 G2) = x] � "dlog

for a negligible probability "codlog. We say that the co-DLOG assumption is
(tcodlog, "codlog)-secure if no algorithm (tcodlog, "codlog)-solves the co-DLOG prob-
lem.

Definition 3. q�Strong Di�e-Hellman Assumption (SDH) [26]. An algorithm
C is said to (tsdh, "sdh)-break the SDH assumption if C runs in time at most tsdh
and furthermore:

Pr[x 2 Zp, c 2 Zp \ {�x}] : C(g1, gx1 , . . . , gx
q

1 , g2, g
x

2) = (g
1

x+c

1 , c)] � "sdh

for a negligible probability "sdh. We say that the SDH assumption is (tsdh, "sdh)-
secure if no algorithm (tsdh, "sdh)-solves the SDH problem.

Definition 4. q�co-Strong Di�e-Hellman Assumption (co-SDH) [14]. An al-
gorithm C is said to (tcosdh, "cosdh)-break the co-SDH assumption if C runs in time
at most tcosdh and furthermore:

Pr[x 2 Zp, c 2 Zp \ {�x}] : C(g1, gx1 , . . . , gx
q

1 , g2, g
x

2 , . . . , g
x
q

2) = (g
1

x+c , c)] � "cosdh

for a negligible probability "cosdh. We say that the co-SDH assumption is (tcosdh, "cosdh)-
secure if no algorithm (tcosdh, "cosdh)-solves the co-SDH problem.

3.1 Pedersen Commitment

Pedersen commitment scheme [25] is perfectly hiding and computationally bind-
ing under the discrete logarithm assumption. The public parameters pkPC =
(a, b 2 G) are based on a group G of order p in which the discrete logarithm
assumption holds. In order to commit to a message m, one computes

C = Commit(pkPC ,m, r) = a
m
b
r

where r 2 Z⇤
p
is the randomly selected opening value.

4

3.2 MoniPoly Set Commitment

MoniPoly set commitment scheme [28, 29] is perfectly hiding and computation-
ally binding under the co-SDH assumption. The public parameter is pkMP =
({ak = a

x
0k}n

k=1 2 G1, {Xk = g
x
0k

2 }n
k=1 2 G2,MPEncode) where MPEncode :

Zn
p
! Zn+1

p
converts a set of n messages into coe�cients for a monic polynomial

of degree n + 1. In order to commit to a set of messages A = {m1, . . . ,mn�1},
one computes:

C = Commit(pkMP , A, o) = a
(x0+o)

Q
n�1
k=1 (x

0+mk)
0 =

nY

k=0

a
mk

k

where o 2 Z⇤
p
is the randomly selected opening value and {mj} = MPEncode(A[

{o}). MoniPoly commitment scheme supports zero-knowledge proofs on set op-
erations:

1. intersection: proves the knowledge of an intersection set I = A
0 \A,

2. di↵erence: proves the knowledge of an di↵erence set D = A
0 �A,

which give rise to the show proofs in the MoniPoly ABC system [29].

3.3 Camenisch-Lysyanskaya SDH Signature Scheme

The CL-SDH signature scheme [12, 1, 26] is closely related to the BBS signature
scheme [8]. Since the MoniPoly ABC system [28, 29] is the foundation of our
proposed graph signature scheme, we recall the CL-SDH signature variant de-
scribed by Tan and Groß where the signed messages are the input to an encoding
function MPEncode as described above:

KeyGen(1k, 1n). Construct three cyclic groups G1,G2,GT of order p based on
an elliptic curve whose bilinear pairing is e : G1 ⇥ G2 ! GT . Select ran-
dom generators a, b, c 2 G1, g2 2 G2 and two secret values x, x

0 2 Z⇤
p
. Com-

pute the values X = g
x
2 , {ai = a

x
0i
, Xi = g

x
0i

2 }0in to output the public key
pk = (e,G1,G2,GT , p, b, c, {ai, Xi}0in, X) and the secret key sk = (x, x0).

Sign(pk, sk, {m1, . . . ,mn}). On input m1, . . . ,mn, choose the random values
s, t 2 Z⇤

p
to compute:

v =
⇣
a

Q
n

i=1(x
0+mi)

0 b
s
c

⌘ 1
x+t

and output the signature as � = (t, s, v).

Verify(pk,�, {m1, . . . ,mn}). Given � = (t, s, v), compute {mi}0in = MPEncode({mi}1in).
Output 1 if the following holds:

e(v,X) = e

nY

i=0

a
mi

i
b
s
cv

�t
, g2

!

and output 0 otherwise.

5

Theorem 1. [26, 29] The CL-SDH signature is strongly existential unforgeable
against chosen message attack in the standard model if the SDH problem is
intractable.

4 MoniPoly Graph Encoding

In this section, we o↵er a brief overview of the graph prime encoding proposed
by Groß [18] before presenting our new encoding, namely, the MoniPoly graph
encoding. It is conceptually similar to the former in nature and idea, yet supports
graph encoding over Z⇤

p
instead of over prime numbers.

4.1 Prime Graph Encoding

The prime graph encoding views every vertex and edge as a prime exponent. Ca-
menisch and Groß [10] showed that a prime encoding in general can significantly
speed up the show proofs by exploiting the co-primality and divisibility among
messages. The main parameters for prime graph encoding are as follows:

– V: Vertex universe
– E ✓ (V ⇥ V): Edge universe
– G = (V, E): Graph
– ⌅V : Vertex identifier universe
– ⌅L : Labels universe
– fV : V ! P(⌅L): Labels of a given vertex
– fE : E ! P(⌅L): Labels of a given edge
– �V : product of all vertex identifiers

Q
i2⌅V

i

– �L : product of all labels
Q

i2⌅L
i

where vertex identifiers and label are disjoint:

⌅V \ ⌅L = ; , gcd(�V ,�L) = 1

following the fundamental theorem of arithmetic.
In the following explanation, we focus on an unlabeled graph for clarity

without loss of generality. In order to encode an unlabeled graph using the prime
graph encoding, every vertex i 2 V is mapped to a predefined prime number ei.
Next, let Ri be the base for the i-th vertex and R(i,j) be the base for the (i, j)-
th edge, while mi = ei

Q
k2fV(i) ek and m(i,j) = eiej

Q
k2fE(i,j)

ek denote the
full encoding of vertices and edges, respectively. Assuming the signer knows the
discrete logarithms of every base with respect to the public key element S, a
graph can be represented by its vertex exponents ēi = dlogS(Ri)mi and its edge
exponents ē(i,j) = dlogS(R(i,j))m(i,j).

6

4.2 Encoding Graphs Into the MoniPoly Set Commitment

In the MoniPoly set commitment scheme [28, 29], the messages are converted into
a set of monic polynomial coe�cients using a conversion function MPEncode :
Zn
p
! Zn+1

p
before being committed. Let us view the exponents in MoniPoly as

encoded elements such that:

(x0 + i) mod p , ei mod �(N).

Then, MPEncode can be used as an encoding for graphs similar to the prime
graph encoding.

Recalling from Section 3.2, let the public parameters be {a0k = a
x
0k

00 , X0k =

X
x
0k

00 }n
k=0. To encode a graph G of maximum size L, we generate the following

additional public parameters:

{{aik , Xik
}L
i=1}nk=0

Subsequently, to represent a vertex and an edge, respectively, let {mik
} =

MPEncode(i, fV(i)) and {m(i,j)j} = MPEncode(i, j, fE(i, j)), we have

niY

k=1

a
mik

ik
, R

mi

i
and

n(i,j)Y

k=1

a
m(i,j)k

(i,j)k
, R

m(i,j)

(i,j)

The parameters for prime graph encoding can then be adjusted accordingly
to suit the MoniPoly encoding. Moreover, the MoniPoly encoding fulfills the
requirement that vertex identifiers and labels be disjoint under the fundamental
theorem of algebra. Building upon the conceptualization of Groß’ graph signature
scheme [18], we define graph well-formedness in the context of the MoniPoly
graph encoding as follows:

Definition 5 (Well-formedness). We call a graph encoding well-formed if
and only if:

1. The encoding only contains MoniPoly encoding representatives (x0 + i) 2
⌅V [⌅L in the exponents of the base ai.

2. A base ai contains either exactly one vertex identifier (x0+i) 2 ⌅V , pair-wise
di↵erent from other vertex identifiers and zero or more label representatives
(x0 + k) 2 ⌅L, or;

3. contains exactly two vertex identifiers (x0 + i), (x0 + j) 2 ⌅V and zero or
more label representatives (x0 + k) 2 ⌅L.

Considering the concepts we have introduced so far, we are not yet in the po-
sition the MoniPoly encoding to construct a SDH-based graph signature scheme
in a way similar to Groß’ SRSA-based graph signature scheme [18, 19]. This
is because when an encoded graph is committed as a MoniPoly commitment
naively, it loses its graph well-formedness property due to the shared message
and opening space. This is unlike the combination of prime encoding and Ped-
ersen commitment proposed by Groß. In the following section, we show how to
overcome this problem.

7

5 Graph Well-formedness from a MoniPoly Commitment

We propose a variant of MoniPoly set commitment scheme featuring an ex-
ternalized random blinding which is as secure and as e�cient as the original
scheme [28, 29]. We show that a further extension of this commitment scheme
can commit MoniPoly encoded graphs securely. We continue to prove that the
extension supports graph well-formedness if it has binding property.

5.1 An Externally-Blinded MoniPoly Set Commitment Scheme

To illustrate why a naive use of the original MoniPoly set commitment scheme
fails desired security properties, we first consider the case in which a graph G has
only one vertex V = {i, fV(i)}. The element ai0 then holds the MoniPoly encoded
graph as exponents. It can be viewed as an insecure MoniPoly commitment
C

0 =
Q

n

k=0 a
mk

ik
. Specifically, the opening value for C

0 is one of the committed
graph elements: there exist finitely many of those and they are not random.
Therefore, C 0 is not perfect hiding, though the computational binding property
remains intact under the SDH assumption. Adding the opening value o breaks
the graph well-formedness as (x0 + o) is not part of the graph encoding.

This problem can be resolved by selecting a random blinding o 2 Z⇤
p
to com-

pute the commitment as C = C
0o. One can thereby consider C = C

0x0+o
0
as

a MoniPoly commitment where o = (x0 + o
0) mod p contains unknown open-

ing value o
0 2 Z⇤

p
. Therefore, computing C = Commit(pk,G, o) is equivalent

to computing C = Commit(pk,G, o � x
0). Since finding x

0 yields an intractable
DLOG problem and finding two di↵erent opening values that produce the same
C breaks the co-SDH assumption, the externally-blinded MoniPoly variant is as
secure as the original scheme.

We describe our proposed MoniPoly set commitment variant as follows:

Setup(1k). Same as that in Section 3.2.

Commit(pk,A, o). Taking as input a message set A = {m1, . . . ,mn} 2 Z⇤
p
and

the random opening value o 2 Z⇤
p
, output the commitment as

C =

0

@a

nQ
k=1

(x0+mk)

0

1

A
o

=

nY

k=0

a
mk

k

!o

where {mk} = MPEncode(A).

Open(pk, C,A, o). Return 1 if C =
Q

n

k=0

�
a
mk

j

�o
holds where {mk} = MPEncode(A)

and return 0 otherwise.

8

OpenIntersection(pk, C,A, o, (A0
, l)). If |A0 \ A| � l holds, return an intersection

set I = A
0 \A of length l and a witness such that:

W =

a

Q
mk2(A�I)

(x0+mk)

0

!o

=

nY

k=0

a
wj

j

!o

where {wk} = MPEncode(A� I). Otherwise, return a null value ?. The correct-
ness can be verified as follows:

C = W

Q
mk2I

(x0+mk)

=

a

o
Q

mk2(A�I)

(x0+mk)

0

! Q
mk2I

(x0+mk)

=

a

Q
mk2A

(x0+mk)

0

!o

.

VerifyIntersection(pk, C, I,W, (A0
, l)). Return 1 if

e

0

@C

|A0|Y

k=0

a
m1,k

k
, X0

1

A = e

0

@W

|A0|�lY

k=0

a
m2,k

k
,

lY

k=0

X
ik
k

1

A

9

holds and return 0 otherwise, where {ik} = MPEncode(I), {m1,k} = MPEncode(A0)
and {m2,k} = MPEncode(A0 � I). The correctness is shown as follows:

e

0

@C

|A0|Y

k=0

a
m1,k

j
, X0

1

A

= e (C,X0) e

0

@
|A0|Y

k=0

a
m1,k

k
, X0

1

A

= e

a

o
Q

mk2A

(x0+mk)

0 , X0

!
e

0

@a

Q

mk2A0
(x0+mk)

0 , X0

1

A

= e

a

o
Q

mk2(A�I)

(x0+mk)

0 , X

Q
mk2I

(x0+mk)

0

!
e

0

@a

Q

mk2(A0�I)

(x0+mk)

0 , X

Q
mk2I

(x0+mk)

0

1

A

= e

W,

lY

k=0

X
ik
k

!
e

0

@
|A0|�lY

k=0

a
m2,k

k
,

lY

k=0

X
ik
k

1

A

= e

0

@W

|A0|�lY

k=0

a
m2,j

k
,

lY

k=0

X
ij
k

1

A

OpenDi↵erence(pk, C,A, o, (A0
, l̄)). If |A0 \ A| � l̄ holds, return a di↵erence set

D = A
0 � A of length l̄ and the witness

W =

n�l̄Q
k=0

a
wk

k
, {rk}l̄�1

k=0

!
. The values

({wk}, {rk}) = MPEncode(A)/MPEncode(D) are computed using expanded syn-
thetic division such that {wk} are the coe�cients of quotient q(x0) and {rk}
are the coe�cients of remainder r(x0). Specifically, let the polynomial divisor be

d(x0) =
l̄P
k

dkx
0k where {dk} = MPEncode(D), the monic polynomial f(x0) in

the commitment C = a
f(x0)
0 can be rewritten as f(x0) = d(x0)q(x0) + r(x0). Note

that
l̄�1Q
k=0

a
rk
k

6= 1G1 whenever d(x0) cannot divide f(x0), i.e., the sets A and D are

10

disjoint. The correctness can be verified from the following:

C =

a

Q
mk2A

(x0+mk)

0

!o

=
⇣
a
q(x0)d(x0)+r(x0)
0

⌘o

=

0

B@a

o

n�l̄P
k=0

wkx
0k

0

1

CA

d(x0)0

@
l̄�1Y

k=0

a
rk
k

1

A
o

= W
d(x0)

0

@
l̄�1Y

k=0

a
rk
k

1

A
o

.

VerifyDi↵erence(pk, C,D, (W, {rk}l̄�1
k=0), (A

0
, l̄)). Return 1, if the following holds:

e

0

@C

0

@
l̄�1Y

k=0

a
�rk
k

1

A
o |A0|Y

k=0

a
m1,k

k
, X0

1

A = e

0

@W

|A0|�l̄Y

k=0

a
m2,k

k
,

l̄Y

k=0

X
dk
k

1

A ,

l̄�1Y

k=0

a
rk
k

6= 1G1

and return 0 otherwise, where {dk} = MPEncode(D), {m1,k} = MPEncode(A0)
and {m2,k} = MPEncode(A0 �D). The correctness is as follows:

e

0

@C

0

@
l̄�1Y

k=0

a
�rk
k

1

A
o |A0|Y

k=0

a
m1,k

k
, X0

1

A

= e

0

@C

0

@
l̄�1Y

k=0

a
�rk
k

1

A
o

, X0

1

A e

0

@
|A0|Y

k=0

a
m1,k

k
, X0

1

A

= e

⇣
a
od(x0)q(x0)+or(x0)
0 a

�or(x0)
0 , X0

⌘
e

0

@a

Q

mk2A0
(x0+mk)

0 , X0

1

A

= e

⇣
a
od(x0)q(x0)
0 , X0

⌘
e

0

@a

Q

mk2(A0�D)

(x0+mk)

0 , X

Q
mk2D

(x0+mk)

0

1

A

= e

0

B@a

o

n�l̄P
k=0

wkx
0k

0 , X
d(x0)
0

1

CA e

0

@
|A0|�l̄Y

k=0

a
m2,k

k
, X

d(x0)
0

1

A

= e

0

@W

|A0|�l̄Y

k=0

a
m2,k

k
,

l̄Y

k=0

X
dk
k

1

A .

For the completeness of security analysis, we support the security for the
proposed scheme with Theorem 2.

11

Theorem 2. The externally-blinded MoniPoly set commitment scheme is per-
fectly hiding and computational binding under the q-SDH assumption.

Proof. (Sketch.) The externally-blinded commitment scheme described here is
similar to the original MoniPoly commitment scheme [29] such that one can prove
its security by adapting the latter’s security proofs. Specifically, we can view the
externally-blinded variant as a MoniPoly commitment with a randomized base
in the proof such that:

C =

nY

k=0

a
mk

k

!o

=
nY

k=0

(ao
k
)mk

.

As one can easily see, the new scheme inherits the perfectly hiding property
from original MoniPoly scheme. On the other hand, if an adversary outputs
(A, o0) 6= (A⇤

, o
00) such that

1. Open(pk,Commit(pk,A, o
0), A, o

0) =
Open(pk, ,Commit(pk,A⇤

, o
00), A⇤

, o
00),

2. OpenIntersection(pk,Commit(pk,A, o0), A, o
0
, (A0

, l)) =
OpenIntersection(pk,Commit(pk,A⇤

, o
00), A⇤

, o
00
, (A0

, l)),
3. OpenDi↵erence(pk,Commit(pk,A, o

0), A, o
0
, (A0

, l̄)) =
OpenDi↵erence(pk,Commit(pk,A⇤

, o
00), A⇤

, o
00
, (A0

, l̄)),

a q-SDH solution can be extracted from the fact that two di↵erent sets (A, o
0), (A⇤

, o
00)

yield the same commitment C. The extraction is the same as in the original
MoniPoly scheme but uses the randomized bases a

o
0

k
, a

o
00

k
. Note that we can al-

ways derandomize the bases to gain their original form as in the given SDH
instance because o

0 and o
00 are known. ut

5.2 An Extended Externally-Blinded MoniPoly Set Commitment

The proposed variant of MoniPoly set commitment can be used to commit a
Monipoly encoded graph, if we add parameters {{aik , Xik

}n
k=0}Li=1 specific for

the MoniPoly encoding to the commitment parameters. While the commitment
opening algorithms can be amended accordingly, the security proof requires a
considerate modification. In particular, while the perfectly hiding property fol-
lows trivially, the computational binding property is now based on the hardness
of the co-DLOG problem.

Theorem 3. The extended externally-blinded MoniPoly set commitment is bind-
ing if the co-DLOG problem is hard.

Proof. Given a co-DLOG instance (g1, h1 = g
x
1 2 G1, g2, h2 = g

x
2 2 G2), we

construct a challenger C that runs the adversary A of extended MoniPoly set
commitment scheme as a sub-routine to find the solution x. C sets {a0k =

g
x
0k

1 , X0k = g
x
0k

2 }n
k=0 and {{aik = h

bix
0k

1 , Xik
= h

bix
0k

2 }n
k=0}Li=1 for randomly

chosen bi, x
0 2 Z⇤

p
. C publishes {{aik , Xik

}n
k=0}Li=0 as the public parameters.

12

Without loss of generality, we assume a graph is MoniPoly encoded using the
bases aik in the sequence i = 1, 2, . . . , L. If an adversary can output an extended
MoniPoly set commitment C for two di↵erent graph data sets (G,G⇤) such that
|G \ G⇤| � 2:

G = {V [E} = {(i, fV(i), o0i) 2 V, (i, j, fE(i, j), o
0
(i,j)) 2 E},

G⇤ = {V ⇤ [E
⇤} = {(i⇤, fV(i⇤), o00i) 2 V

⇤
, (i⇤, j⇤, fE(i

⇤
, j

⇤), o00(i,j)) 2 E
⇤},

where {o0
i
, o

0
(i,j), o

00
i
, o

00
(i,j)} are the opening values for vertices and edges, respec-

tively, a co-DLOG solution can be extracted. This follows from:

C =
Y

i2V

a

(x0+i)
Q

w2fV (i)

(x0+w)

i0

!o
0
i Y

i2E

a

(x0+i)(x0+j)
Q

w2fE (i,j)

(x0+w)

(i,j)0

!o(i,j)0

=
Y

i⇤2V ⇤

a

(x0+i
⇤)

Q
w⇤2fV (i⇤)

(x0+w
⇤)

i0

!o
00
i Y

i⇤2E

a

(x0+i
⇤)(x0+j

⇤)
Q

w⇤2fV (i⇤,j⇤)

(x0+w
⇤)

(i,j)0

!o(i⇤,j⇤)

,

giving the following equations:

g

(x0+i)
Q

w2fV (i)

(x0+w)

1 h

|V |P
2
(x0+i)

Q
w2fV (i)

(x0+w)+
|E|P
1
(x0+i)(x0+j)

Q
w2fE (i,j)

(x0+w)

= g
u

1h
v

1

= g

(x0+i
⇤)

Q
w⇤2fV (i⇤)

(x0+w
⇤)

1 h

|V ⇤|P
2

(x0+i
⇤)

Q
w⇤2fV (i⇤)

(x0+w
⇤)+

|E⇤|P
1

(x0+i
⇤)(x0+j

⇤)
Q

w⇤2fE (i⇤,j⇤)

(x0+w
⇤)

= g
u
⇤

1 h
v
⇤

1

Therein, the Challenger C can compute:

x =
u� u

⇤

v⇤ � v
mod p

to solve the co-DLOG problem. The argument on the OpenIntersection and Open-

Di↵erence algorithms is similar to that in the proof of Theorem 2. ut

Thereafter, whenever we mention a MoniPoly commitment, we mean the
extended externally-blinded MoniPoly set commitment scheme.

5.3 Graph Composition

The MoniPoly commitment C =
Q

i2V
Ci

Q
(i,j)2E

C(i,j) on a graph G is the
product of vertex commitments Ci and edge commitments C(i,j), where:

Ci =

niY

k=0

a
mik

ik

!oi

, C(i,j) =

n(i,j)Y

k=0

a
m(i,j)k

(i,j)k

!o(i,j)

13

To prove the composition of the graph commitment C, one can run proof
of knowledge protocols for the MoniPoly Open algorithms on every Ci 2 V and
C(i,j) 2 E. These proof of knowledge protocols can be combined into a graph
composition statement graph(C):

PK

(
(8i 2 V : "i0 , "i1 , 8(i, j) 2 E : "(i,j)0 , "(i,j)1) :

e (C,X00) =
Y

i2V

e

W

0
i
,

1Y

k=0

X
"ik
0k

!
Y

(i,j)2E

e

W

0
(i,j),

1Y

k=0

X
"(i,j)k
0k

!)
.

The correctness can be verified from the equation below:

e (C,X00) =
Y

i2V 0

e

✓
a
r
�1
i

oi

Q
w2fV (i)(x

0+w)

i0
, X

ri(x
0+i)

00

◆
·

Y

(i,j)2E0

e

✓
a
r
�1
(i,j)

o(i,j)(x
0+j)

Q
w2fE (i,j)(x

0+w)

(i,j)0
, X

r(i,j)(x
0+i)

00

◆

We can replace the exponent i for X00 with a random attribute w without a↵ect-
ing the randomness in the proof as claimed in Lemma 1. The graph composition
proof also appears in the possession(�,G) statement to prove the validity of a
graph signature.

Lemma 1. The randomization of C in graph is perfectly hiding.

Proof. The MoniPoly opening values oi, o(i,j) turns the GT elements:

Y

i2V 0

e

✓
a
r
�1
i

Q
w2fV (i)(x

0+w)

i0
, X

ri(x
0+i)

00

◆oi Y

(i,j)2E0

e

✓
a
r
�1
(i,j)

(x0+j)
Q

w2fE (i,j)(x
0+w)

(i,j)0
, X

r(i,j)(x
0+i)

00

◆o(i,j)

into a Pedersen set commitment (Lemma 14) which is perfectly hiding. When
C consists of one vertex or one edge only, the single GT element is a MoniPoly
commitment and it is perfectly hiding. ut

5.4 Bootstrapping of MoniPoly-Encoded Graphs

The graph statement proves that C can be decomposed into MoniPoly commit-
ments Ci, C(i,j) only. In order to prove that C is a commitment for a correctly
encoded graph, we need to further show that the n vertex commitments Ci 2 V

and m edge commitments C(i,j) 2 E is correctly encoded. Firstly, instead of
selecting a random exponent for the X0k elements in graph, we set all encoded
labels as exponents for the witness W 0

i
,W

0
(i,j) and the encoded identifiers as the

exponents for the X0k elements. Secondly, assuming the universe for identifiers
(⌅V) and labels (⌅L) are publicly known, we need to prove the existence of

14

every commitment’s identifier and labels in ⌅V and ⌅L, respectively. Comput-
ing the n+m MoniPoly commitment for ⌅V and ⌅L is required because every
commitment Ci (resp. C(i,j)) is computed on a di↵erent base aik (resp. a(i,j)k).

This complexity overhead can be avoided by an additional step of bootstrap-
ping [18] that switches the bases {ai}i2V , {a(i,j)}(i,j)2E to a0 such that:

Ci =

niY

k=0

a
mik

0k

!oi

, C(i,j) =

n(i,j)Y

k=0

a
m(i,j)k
0k

!o(i,j)

.

The two MoniPoly commitments for ⌅V and ⌅L are now computed only once
on the base a0k and referenced by all set membership proofs. Moreover, since
{Ci, C(i,j)} are computed on the same base, we can prove the encoding cor-
rectness for all the vertices and edges by using only two set membership proofs
plus two cumulative product proofs, respectively. We first explain the simpler
bootstrap statement as follows:

PK

(
(8i 2 V : "i0 , "i1 , 8(i, j) 2 E : "(i,j)0 , "(i,j)1 , "(i,j)2) :

e (C,X00) =
Y

i2V

e

W

0
i
,

1Y

k=0

X
"ik
0k

!
Y

(i,j)2E

e

W

0
(i,j),

2Y

k=0

X
"(i,j)k
0k

!
^

e

0

@
Y

i2V

Ci

Y

(i,j)2E

C(i,j), X00

1

A =

Y

i2V

e

Wi,

1Y

k=0

X
"ik
0k

!
Y

(i,j)2E

e

W(i,j),

2Y

k=0

X
"(i,j)k
0k

!
^

e

0

@
Y

i2V

W
0
i

Y

(i,j)2E

W
0
(i,j), X00

1

A =
Y

i2V

e (Wi, Xi0)
Y

(i,j)2E

e
�
W(i,j), X(i,j)0

�
)

where "i,1 = ri, "(i,j),2 = r(i,j),W
0
i
= a

oir
�1
i

Q
w2fV (il)

(x0+w)

i0
andW

0
(i,j) = a

o(i,j)r
�1
(i,j)

Q
w2fE ((i,j)l)

(x0+w)

(i,j)0
for randomly selected oi, ri, o(i,j), r(i,j) 2 Z⇤

p
and commitments {C,Ci, C(i,j),W

0
i
,W

0
(i,j),Wi,W(i,j)}

are public inputs.

The first statement is the graph(C) statement while the second and third
statements are the bootstrapping statement bootstrap(C). The MoniPoly com-
mitments {Ci, C(i,j),Wi,W(i,j)} that appear in the bootstrapping will be used in
vertices and edges which are described in the next sections. Note that the boot-
strapping can be compressed to result in a more e�cient proof of representation

15

as follows:

PK

(
(8i 2 V : "i0 , "i1 , 8(i, j) 2 E : "(i,j)0 , "(i,j)1 , "(i,j)2) :

e (C,X00) =
Y

i2V

e

W

0
i
,

1Y

k=0

X
"ik
0k

!
Y

(i,j)2E

e

W

0
(i,j),

2Y

k=0

X
"(i,j)k
0k

!
^

e

0

@
Y

i2V

W
0
i
Ci

Y

(i,j)2E

W
0
(i,j)C(i,j), X00

1

A =

Y

i2V

e

Wi, Xi0

1Y

k=0

X
"ik
0k

!
Y

(i,j)2E

e

W(i,j), X(i,j)0

2Y

k=0

X
"(i,j)k
0k

!)
.

Lemma 2. The randomization of C in bootstrap is perfectly hiding.

Proof. The proof is the same as Lemma 1. ut

5.5 Vertex Composition

The core idea in the vertices statement is to prove the computation correctness for
the cumulative products of all vertex identifiers i and labels fV(i), respectively,
in a graph G. Also, vertices proves the cumulative products are a subset of vertex
identifier universe (e.g. i 2 ⌅V) and label universe (e.g. fV(i) 2 ⌅L), respectively.
We note that the proof semantics of this proof are di↵erent from the original
graph signature scheme [18] as the latter’s vertex composition statement only
decomposed the graph signature into singleton commitments on encodings of
individual vertices.

16

Let V =
S
{V1, . . . , V`} be the vertex set in a graph G, the vertices statement

is described as the following protocol:

PK{(8i 2 V : "i0 , "i1) : e

Y

i2V

Ci, X00

!
=

`Y

l=1

e

Wl,

1Y

k=0

X
"lk
0k

!
^

e (WV1 , X00) = e

a00 ,

1Y

k=0

X
"1k
0k

!
^ e (a00 ,WL1) = e (W1, X00)^

e (WV2 , X00) = e

WV1 ,

1Y

k=0

X
"2k
0k

!
^ e (WV3 , X00) = e

WV2 ,

1Y

k=0

X
"3k
0k

!
^

· · · ^ e (a00 ,WV`
) = e

WV`�1 ,

1Y

k=0

X
"`k
0k

!
^ e

0

@
|⌅V |Y

k=0

a
mVk

0k
, X00

1

A = e
�
W⌅V\V ,WV`

�
^

e (a00 ,WL2) = e (W2,WL1) ^ e (a00 ,WL3) = e (W3,WL2)^

· · · ^ e (a00 ,WL`
) = e

�
W`,WL`�1

�
^ e

0

@
|⌅L|Y

k=0

a
mLk

0k
, X00

1

A = e
�
W⌅L\fV(V),WL`

�

}

where {mVk} = MPEncode(⌅V), {mLVk
} = MPEncode(⌅LV),Wl =

Q|fV(il)|
k=0 a

mlk

0k
,

{"l0 , "l1} = rl ⇥ MPEncode({il}) and {mlj
} = ol · r�1

l
⇥ MPEncode(fV(il)) for

randomly selected ol, rl 2 Z⇤
p
. The public inputs (W1, . . . ,W`) are witnesses for

the vertex labels, (WV1 , . . . ,WV`
,W⌅V\V) are witnesses for the cumulative prod-

uct of vertex identifiers while (WL1 , . . . ,WL`
,W⌅L\fV(V)) are witnesses for the

cumulative product of vertex labels. The first statement is the bootstrap state-
ment while the correctness for the cumulative products can be verified from the
following equationss:

e (WVl
, X00) = e

✓
a
rl(x

0+il)
Q

l�1
k=1 rk(x

0+ik)
00 , X00

◆

= e

✓
a

Q
l�1
k=1 rk(x

0+lk)
00 , X

rl(x
0+il)

00

◆

= e

WVl�1 ,

1Y

k=0

X
"lk
0k

!

and,

e (a00 ,WLl
) = e

✓
a00 , X

ol·r�1
l

Q
w2fV (il)

(x0+w)
Q

l�1
k=1 ok·r�1

k

Q
w2fV (ik)(x

0+w)

00

◆

= e

✓
a
ol·r�1

l

Q
w2fV (il)

(x0+w)

00 , X

Q
l�1
k=1 ok·r�1

k

Q
w2fV (ik)(x

0+w)

00

◆

= e
�
Wl,WLl�1

�
.

17

The proofs of cumulative product for the vertex identifiers and labels implic-
itly prove the pair-wise di↵erences for every vertex. Let WV0 = a00 ,WL0 = X00 ,
simplifying the pairing notations in the proof above gives:

PK

⇢
(8i 2 V : "i0 , "i1) : e

Y

i2V

Ci, X00

!
=

`Y

l=1

e

Wl,

1Y

k=0

X
"lk
0k

!
^

e

0

@
|⌅V |Y

k=0

a
mVk

0k

`�1Y

l=1

WVl
, X00

1

A =

`Y

l=1

e

WVl�1 ,

1Y

k=0

X
"lk

k

!
e
�
a
�1
00 W⌅V\V ,WV`

�
^

e

0

@
|⌅L|Y

k=0

a
mLk

0k
, X00

1

A e

a00 ,

`Y

l=1

WLl

!
=

`Y

l=1

e
�
Wl,WLl�1

�
e
�
W⌅L\fV(V),WL`

��

to establish the vertices(V) statement1 where Ci links to the graph signature. In
the subsequent sections, we use "i[Ci] 2 ⌅V and Wi[Ci] ✓ ⌅L as the short form
for the last two statements. They are read as "i encoded in commitment Ci is a
member of ⌅V , and correspondingly, Wi encoded in commitment Ci is a witness
for a member of ⌅L.

Lemma 3. The randomization of (WV1 , . . . ,WV`
,W⌅V\V) and (WL1 , . . . ,WL`

,W⌅L\fV(V))
in vertices are perfectly hiding.

Proof. The random values rl, ol turn the witnesses in the cumulative products:

WVl
=
⇣
a

Q
l

k=1(x
0+ik)

00

⌘Ql

k=1 rk

,W⌅V\V =

✓
a

Q|⌅V\V |
k=1 (x0+ik)

00

◆Q
`

k=1 r
�1
k

and

WLl
=

✓
X

Q
l

k=1

Q
w2fV (ik)(x

0+w)

00

◆Q
l

k=1 ok·r�1
k

,W⌅L\E =

✓
a

Q|⌅L\E|
k=1

Q
w2fV (ik)(x

0+w)

00

◆Q
`

k=1 o
�1
k

·rk

into MoniPoly commitments which are perfectly hiding. ut

5.6 Edge Composition

The edge composition works in the similar way as the vertex composition and
is, again, conceptually di↵erent from the edge composition statement of the

1 The first statement can be combined with the second and third statements to save
another `+ 2 pairing operations but we do not present the proof as such for clarify
purposes.

18

original graph signature scheme [18]. Here, we need to run at least three proofs
of cumulative products: one for the even-indexed edge identifiers, one for the
odd-indexed edge identifiers and one for the edge labels. This is because all but
the first and the last vertex identifiers appear at least twice in the edges. The
number of set membership proof increases with respect to the number of branches
in a graph. A simple way to separate the edges is to traverse the entire graph
and record the edge identifiers into vertex sets E1, . . . , E` such that every vertex
identifier is unique in its own set. We first consider the scenario of an undirected
acyclic graph. The protocol below establishes the statement edges(E):

PK

⇢
(8(i, j) 2 E : "(i,j)0 , "(i,j)1 , "(i,j)2) :

e

0

@
Y

(i,j)2E

C(i,j), X00

1

A =
Y

(i,j)2E

e

0

@W(i,j),

2Y

j=0

X
"(i,j)j

j

1

A^

"(i,j)[C(i,j)E1
] 2 ⌅V ^ · · · ^ "(i,j)[C(i,j)E`

] 2 ⌅V^

W(i,j)[C(i,j)E] 2 ⌅L

�

where the first statement is the bootstrap statement.

Lemma 4. The randomization of {WV1 , . . . ,WV|Ek| ,W⌅V\Ek
}`
k=1 and (WL1 , . . . ,

WL|E| ,W⌅L\fE(V)) in edges are perfectly hiding.

Proof. The proof is the similar to that of Lemma 3. ut

In addition, the edge identifier in a directed acyclic graph is represented by
three vertex identifiers. For instance, (i, j, j) represents a directed edge from i to
j. We can construct the edge composition proof for directed acyclic graph with a
minor modification to its undirected counterpart. To be precise, the prover runs
the proof of undirected version using (i, j) extracted from (i, j, j), in addition to
proving j is a valid vertex identifier from ⌅V . We describe the proof as follows:

PK

⇢
(8(i, j, j) 2 E : "(i,j,j)0 , "(i,j,j)1 , "(i,j,j)2 , "(i,j,j)3 , "j0 , "j1) :

e

0

@
Y

(i,j,j)2E

C(i,j,j), X00

1

A =
Y

(i,j,j)2E

e

W(i,j,j),

3Y

k=0

X
"(i,j,j)j

0k

!
^

e

0

@a00 ,

Y

(i,j,j)2E

3Y

k=0

X
"(i,j,j)j

0k

1

A =
Y

(i,j,j)2E

e
�
W(i,j), a

"j1
01 X

"j0
00

�
^

W(i,j)[C(i,j,j)E1
] 2 ⌅V ^ · · · ^W(i,j)[C(i,j,j)E`

] 2 ⌅V ^ "j [C(i,j,j)] 2 ⌅V

W(i,j,j)[C(i,j,j)E] 2 ⌅L

�

19

where an additional proof of cumulative product is needed for every extra vertices
j 2 E. At this point, it is clear that whether a graph is acyclic or cyclic does not
has an impact on our edges statement. In the subsequent sections, we assume
the graph is always an undirected graph in order to ease the explanation.

5.7 Graph Well-formedness

Combining the statements above, we can construct a proof of well-formedness
for an encoded graph as below:

PK{(8i 2 V : "i0 , "i1 , 8(i, j) 2 E : "(i,j)0 , "(i,j)1 , "(i,j)2) :

graph(C) ^ bootstrap(C) ^ vertices(V) ^ edges(E)}

Theorem 4. The compound proof of knowledge of graph, bootstrap, vertices and
edges establishes the well-formedness according to Def. 5 of an encoded graph.

Proof. Lemma 1 to Lemma 4 reduce the hardness of breaking the perfect hiding
property in the proofs to breaking that of MoniPoly set commitment and Peder-
sen set commitment. This implicitly reduces the hardness of breaking the graph
well-formedness to the hardness of breaking the binding property of the two
commitment schemes which assume the hardness of the co-DLOG problem and
DLOG problem, respectively. This is because graph, vertices and edges prove the
required properties listed in Def. 5. Specifically, the bootstrap statement links
graph to the vertices and edges statements, whose set membership proofs and
cumulative product proofs prove that: (1) all committed exponent must fall in
a system defined universes, (2) all committed exponents are pair-wise di↵erent
with respect to the system defined universes, (3) every vertex (resp. edge) con-
tains one identifier (resp. two identifiers) and zero or more labels. Therefore, the
graph well-formedness holds if co-DLOG and DLOG problems are hard. ut

6 A New Graph Signature Scheme

6.1 Interface

We adapt the scheme interface from the MoniPoly anonymous attribute-based
credential (ABC) system [28, 29] for our new graph signature scheme2 In the
graph signature context, the access control policy �stmt is termed as the predi-
cate an we view a graph signature as six algorithms GS = {KeyGenS,KeyGenU,
(Obtain, Sign), (Prove,Verify)}.
2 While Groß’ graph signature scheme [18] was the first and only one of its kind and
bears similarities to the Camenisch-Groß ABC system [10], both systems inherited
their security properties from the underlying CL signature scheme and its proof
system and were not proven rigorously for their overall systems. As we aim for a
tight reduction proof, a properly defined interface and security notions, such as that
by MoniPoly ABC system [29] appear to be a sound starting point.

20

To fully exploit the features of a graph signature scheme, we further divide the
signing process (Obtain, Sign) into three parts: 1) begins with an initial signing
(InitObtain, InitSign), 2) optionally continues to at least one intermediate signing
for graph accumulation (IntermObtain, IntermSign), 3) ends with a final signing
(FinalObtain, FinalSign). If a user runs the initial signing followed by the final
signing, it resembles Groß’ single signing [18]. If there is at least an intermediate
signing in between the initial and final signings, it realizes Groß’ joint graph
signing [18]. This design makes the support of multi-signer applications a trivial
e↵ort, while still conforming to our rigorous security model. The scheme interface
is described as follows:

1. KeyGenS(1k, 1L, 1n) ! (pkS, skS): This algorithm is executed by the signer
(S). On the input of the security parameter k, maximum supported graph
size L and the graph attributes upper bound n, it generates a key pair
(pkS, skS).

2. KeyGenU(pkS) ! (skU): This algorithm is executed by the user to generate
a user (U) secret key pair skU.

3. (Obtain(pkS, AU), Sign(pkS, skS, AS)) ! (� or ?): The signing protocol out-
puts a valid graph signature � for two message sets (AU, AS) if it completes
successfully. Otherwise, it outputs a null value ?. The signing protocol starts
with the initial signing and ends with the final signing:
(a) (InitObtain(pkS, {skU, s0}), InitSign(pkS, skS, {GS})) ! (�init or ?): The

signing process always starts with this initial signing protocol. It signs
a committed user secret key skU and a graph data set GS given by the
signer. User private input is a set AU = {skU, s0} which contains the
user secret key skU and its opening value s

0. Signer private inputs are
the signer secret key skS and a graph data set AS = GS. At the end of
the protocol, the algorithm outputs a valid initial signature �init and a
null value ? otherwise.

(b) (IntermObtain(pkS, {skU, s0,GU, {oi, o(i,j)}}), IntermSign(pkS, skS, {GS})) !
(�interm or ?): This optional intermediary signing protocol signs a com-
mitted user secret key skU, a committed hidden graph data set GU and
a graph data set GS given by the signer. User private input is a set
AU = {skU, s0,GU, {oi, o(i,j)}} which contains the user secret key skU

and his hidden graph GU where s
0 and {oi, o(i,j)} are their opening val-

ues, respectively. Signer private inputs are the signer secret key skS and
a graph data set AS = GS. At the end of the protocol, the algorithm out-
puts a valid intermediate signature �interm and a null value ? otherwise.

(c) (FinalObtain(pkS, {skU, s0,GU, {oi, o(i,j)}}),FinalSign(pkS, skS,?)) ! (� or ?
): The signing process always ends with this final signing protocol. It
signs a committed user private key skU and a committed hidden graph
GU. User private input is a set AU = {skU, s0,GU, {oi, o(i,j)}} which con-
tains the user secret key skU and his hidden graph GU where s

0 and
{oi, o(i,j)} are their opening values, respectively. Signer private input
is the signer secret key skS. At the end of the protocol, the algorithm
outputs a valid graph signature � and a null value ? otherwise.

21

4. (Prove(pkS,�,�stmt),Verify(pkS,�stmt) ! (b): This interactive showing pro-
tocol establishes a show proof for the predicate �stmt requested by verifier
such that �stmt(A) = 1. If �stmt(A) = 0, the graph signature holder aborts
and Verify outputs b = 0. At the end of the protocol, Verify outputs b = 1 if
it accepts prover’s proof and outputs b = 0 otherwise.

In the subsequent sections, we will use Obtain (resp. Sign) to represent all
three sub-modules.

6.2 Security Requirements

The graph signature scheme is governed by the security requirements imperson-
ation resilience and unlinkability (for graphs and protocol), whose general forms
were first introduced in the MoniPoly ABC [28, 29].

Impersonation Resilience. We define our security model as the security against
impersonation under active and concurrent attacks (imp-aca) in the game be-
tween an adversary A and a challenger C as follows.

Game 1 (imp� aca(A, C))

1. Setup: C runs KeyGen(1k, 1n) and sends pkS to A.
2. Phase 1: A is able to issue concurrent queries to the Obtain, Prove and

Verify oracles where he plays the role of user, prover and verifier, respectively.
A can query a set AUi

(resp., �i) of his choice to Obtain (resp., Prove and
Verify) in the i-th query. A can also issue queries to the SignTranscript oracle
which takes in AUi

and returns its signing protocol transcript.
3. Challenge: A outputs the challenge data set A⇤

U and its corresponding pred-
icate �⇤ such that �⇤(AUi

) = 0 and �⇤(A⇤
U) = 1 for every AUi

queried to the
Obtain oracle during Phase 1.

4. Phase 2: A can continue to query the oracles as in Phase 1 with the restric-
tion that it cannot query a data set AUi

to Obtain such that �⇤(AUi
) = 1.

5. Impersonate: A completes a showing protocol as the prover with C as the
verifier for the predicate �⇤(A⇤

U) = 1. A wins the game if C outputs 1.

Definition 6. An adversary A is said to (timp, "imp)-break the security against
impersonation under active and concurrent attacks (imp-aca) of a graph signa-
ture scheme if A runs in time at most timp and wins in Game 1 such that:

Pr[(A,Verify(pk,�⇤)) = 1] � "imp

for a negligible probability "imp. We say that a graph signature scheme is imp-

aca-secure if no adversary (timp, "imp)-wins Game 1.

22

Unlinkability. The security model for graph unlinkability under active and con-
current attacks (gunl-aca) is defined as a game between an adversary A and a
challenger C. The gunl-aca security does not consider the collusion in between A
and signer. We argue that such security is su�cient for a graph signature scheme
because the signer is always a trusted party.

Game 2 (gunl� aca(A, C))

1. Setup: C runs KeyGen and sends pkS, skS to A.
2. Phase 1: A is able to issue concurrent queries to the Commit, Obtain, Prove

and Verify oracles where he plays the role of committer, user, signer, prover
and verifier, respectively, on any hidden set AUi

of his choice in the i-th
query. A can also issue queries to an additional oracle, namely, Corrupt that
when queried with a protocol session identifier, returns the entire internal
state of a user in a signing protocol, or the entire internal state of a prover
in the showing protocol.

3. Challenge: A decides the two non-empty hidden set AU0 = {skU0 , s
0
0,GU0 =

{V0[E0}, {o0i , o0(i,j)}}, AU0 = {skU1 , s
0
1,GU1 = {V1[E1}, {o1i , o1(i,j)}} with

|V0| = |V1|, |E0| = |E1| and the predicate �⇤ which he wishes to challenge
such that �⇤(AU0) = �

⇤(AU0) = 1. A is allowed to select AU0 , AU1 from the
existing queries to Obtain in Phase 1. C responds by randomly choosing a
challenge bit b 2 {0, 1} and interacts as the user with A as the signer to
complete the protocols in the order:

(InitObtain(pkS, {skU, s0}), InitSign(pkS, skS, {GUb
})) ! �init,b,

(FinalObtain(pkS, AUb
),FinalSign(pkS, skS,?)) ! �b,

(InitObtain(pkS, {skU, s0}), InitSign(pkS, skS, {GU1�b
})) ! �init,1�b,

(FinalObtain(pkS, AU1�b
),FinalSign(pkS, skS,?)) ! �1�b

where skU, s
0 are randomly chosen by C. If there are n times intermediary

signing in between, the challenge graph is formatted as GUb
=
S
{Gb,0, . . . ,Gb,n}

such that Gb,i = {Vb,i [Eb,i}, |Vb,i| = |V1�b,i|, |Eb,i| = |E1�b,i| for 0  i  n.
The initial signer signs the graphs Gb,0,G1�b,0 and the i-th intermediary
signer signs on the graphs Gb,i,G1�b,i. Subsequently, C interacts as the prover
with A as the verifier for polynomially many times as requested by A to com-
plete the protocols in the same order:

(Prove(pkS,�b,�
⇤),Verify(pkS,�

⇤)) ! 1,

(Prove(pkS,�1�b,�
⇤),Verify(pkS,�

⇤)) ! 1.

4. Phase 2: A can continue to query the oracles as in Phase 1 except query-
ing the transcripts of the challenged signing and presentation protocols to
Corrupt.

5. Guess: A outputs a guess b
0 and wins the game if b0 = b.

23

Definition 7. An adversary A is said to (tgunl, "gunl)-break the security of graph
unlinkability under active and concurrent attacks (gunl-aca) of a graph signature
scheme if A runs in time at most tgunl and wins in Game 2 such that:

|Pr[b = b
0]� 1

2
| � "gunl

for a negligible probability "gunl. We say that a graph signature is gunl-aca-secure
if no adversary (tgunl, "gunl)-wins Game 2.

The protocol unlinkability under active and concurrent attack (punl-aca) is
defined as a game between an adversary A and a challenger C as follows:

Game 3 (punl� aca(A, C))

1. Setup: Same to that of graph unlinkability game.
2. Phase 1: Same to that of graph unlinkability game.
3. Challenge: Same as that of graph unlinkability game except that C responds

by randomly choosing two challenge bits b1, b2 2 {0, 1} and interacts as the
user with A as the signer to complete the protocols in the order:

(InitObtain(pkS, {skU, s0}), InitSign(pkS, skS, {GUb1
})) ! �init,b1 ,

(FinalObtain(pkS, AUb1
),FinalSign(pkS, skS,?)) ! �b1 ,

(InitObtain(pkS, {skU, s0}), InitSign(pkS, skS, {GUb2
})) ! �init,b2 ,

(FinalObtain(pkS, AUb2
),FinalSign(pkS, skS,?)) ! �b2 .

If there are n intermediary signing protocols, they also follow the order above.
Subsequently, C interacts as the prover with A as the verifier for polynomially
many times as requested by A to complete the protocols in the same order:

(Prove(pkS,�b2 ,�
⇤),Verify(pkS,�

⇤)) ! 1,

(Prove(pkS,�1�b2 ,�
⇤),Verify(pkS,�

⇤)) ! 1.

4. Phase 2: Same to that of graph unlinkability game.
5. Guess: A outputs a guessed pair of signing protocol transcript ⇡(O,S) and

show proof transcript ⇡(P,V) and wins the game if the pair is under the same
credential such that �⇡(O,S)

= �⇡(P,V)
.

Definition 8. An adversary A is said to (tpunl, "punl)-break the security of the
protocol unlinkability under active and concurrent attacks (punl-aca) of a graph
signature scheme if A runs in time at most tpunl and wins in Game 3 such that:

|Pr[�⇡(O,S)
= �⇡(P,V)

]� 1

2
| � "punl

for a negligible probability "punl. We say that an ABC system is punl-aca-secure
if no adversary (tpunl, "punl)-wins Game 3.

24

6.3 Construction

In this section, we first describe the KeyGen of the graph signature, followed by
the three graph signing protocols. At a quick glance, we show the structure of
the graph signature, which is a SDH-CL signature on the MoniPoly encoded
graph:

v
x+t = h

skU · · · a
(x0+i)

Q
k2fV

(x0+k)

i,0 · · ·
| {z }

8 vertices i

· · · a
(x0+i)(x0+j)

Q
k2fE

(x0+k)

(i,j),0 · · ·
| {z }

8 edges (i,j)

b
s
c

6.3.1 Key Generation

Signer S. Construct three cyclic groups G1,G2,GT of order p based on an el-
liptic curve whose bilinear pairing is e : G1 ⇥ G2 ! GT . Choose two random
secret values x, x

0 2 Z⇤
p
and select random generators b, c, d, h 2 G1, {ai0 2

G1, Xi0 2 G2}Li=0 to compute the values {{aik = a
x
0k

i0
, Xik

= X
x
0k

i0
}L
i=0}nk=1. De-

fine the function MPEncode : Zn
p
! Zn+1

p
that converts a set of n attributes

into coe�cients for a monic polynomial of degree n + 1. The public key is
pk = (e,G1,G2,GT , p, b, c, d, h, {{aik , Xik

}L
i=0}nk=0, X,⌅V ,⌅L) and the secret

key is sk = (x, x0) where ⌅V is the list of vertex identifiers and ⌅L is the list
of vertex and edge labels. The parameter L is the maximum vertices and edges
allowed in a graph, while n indicates that each vertex can have no more than
n� 1 labels and each edge can have no more than n� 2 labels.

User U. The user generates the user secret key as skU 2 Z⇤
p
.

6.3.2 Graph Signing As the signing protocols require the signers to transfer
the graphs to the user, we assume a secure channel is always in place.
Initial Signing. The initial signing protocol InitObtain/InitSign begins with a
user providing a proof of representation for the Pedersen commitment C of his
secret key skU. If the proof is verified, using the CL-SDH signature, signer signs
on C together with an assigned graph GS decided by the signer. If the returned
graph signature �0 is a valid signature on C and GS, the user finalizes the graph
signature as �init.

We assume the signer knows the discrete logarithms of bases d, a00 , a10 , . . . , aL0

with respect to b. Without loss of generality, we also assume the signer always
utilize the bases in an incremental sequence such that a10 , . . . , aL0 . For GS, let
the vertex exponents be ēi = dlogb(ai0)(x

0 + i)
Q

w2fV(i)(x
0 + w) while the edge

exponents be ē(i,j) = dlogb(a(i,j)0)(x
0 + i)(x0 + j)

Q
w2fE(i,j)

(x0 +w). The initial
graph signing protocol is as follows:

1. User randomly selects s
0 2 Z⇤

p
and interacts with signer to prove the well-

formedness of his hidden graph:

PK{(⇣, ⇢) : C = h
⇣
b
⇢}

where ⇣ = skU and ⇢ = s
0.

25

2. If the proof is verified, signer signs on C and an assigned graph GS as:

v =
⇣
Cb

s
00+...+ēi+...+ē(i,j)+...+dlog

b
(d)
⌘(x+t)�1

for randomly selected s
00
, t 2 Z⇤

p
. Signer returns (�0 = (t, s00, v),GS) to the

user.
3. If �0 is a valid SDH-CL signature on C and GS, user finalizes his graph

signature as �init = (t, s, v,GU) where s = s
0 + s

00 mod p and hidden graph
GU = GS.

Remark 1. The signing protocol above dispense with a secure channel by em-
ploying an additional encryption step. The Pedersen commitment of the user
secret key C = h

skUb
s
0
can be treated as an ElGamal public key. The signer can

perform a hybrid ElGamal encryption on the signature and graphs to hides all
the information transferred to the user. This approach is also applicable to the
intermediary and final signing protocols.

Intermediary Signing. The intermediary signing protocol is useful for the
applications which require the user to approach di↵erent signers to gather the
needed graphs. This protocol is the same as above except it begins with a user
providing a proof of possession for a blinded initial signature �0

init
= (t, s, v)

such that:

v
0 = v

r1y
�1

, s
0 = sr1 mod p, t

0 = ty mod p

where r1, y 2 Z⇤
p
are the random blinding factors. The correctness for the blinded

signature �0
init

can be verified as follows:

e

0

@h
skU·r1

Y

i2V

C
r1
i

Y

(i,j)2E

C
r1

(i,j)b
s
0
d
r1v

0�t
0
, X00

1

A

= e

0

@h
skU
Y

i2V

Ci

Y

(i,j)2E

C(i,j)b
s
d(vy

�1

)�ty
, X00

1

A
r1

= e(v(x+t)
v
�t
, X00)

r1

= e(v0y, X)

where GU = (V [E). The user also explicitly proves the correctness for the
Pedersen commitment of his secret key skU:

C1 = h
skUr1b

sr1

and the MoniPoly commitment of his hidden graph GU:

Ci = a
oi1 (x

0+i)
Q

w2fV (i)(x
0+w)

i0
, C(i,j) = a

o(i,j)1
(x0+i)(x0+j)

Q
w2fE (i,j)(x

0+w)

(i,j)0
,

C2 =
Y

i2VU

C
r1o

�1
i1

i

Y

(i,j)2EU

C
r1o

�1
(i,j)1

(i,j)

26

where r1, oi1 , o(i,j)1 2 Z⇤
p
are the random blinding factors. We describe the in-

termediary signing protocol as follows:

1. User randomly selects r1, y, oi1 , o(i,j)1 , ri, r(i,j) 2 Z⇤
p
and interacts with the

signer to prove the possession of �init and the representation of his hidden
graph GU:

PK

⇢
((8i 2 VU : "i0 , "i1 , "i), (8(i, j) 2 EU : "(i,j)0 , "(i,j)1 , "(i,j)), ⇣, ⇢,!, ⌧, �) :

e
�
C1C2d

!
v
0�⌧

, X00

�
= e(v0� , X) ^ C1C2 = h

⇣
b
⇢
Y

i2VU

C
"i

i

Y

(i,j)2EU

C
"(i,j)

(i,j) ^

e

0

@
Y

i2VU

Ci

Y

(i,j)2EU

C(i,j), X00

1

A =

Y

i2VU

e

W

0
i
,

1Y

k=0

X
"ik
0k

!
Y

(i,j)2EU

e

W

0
(i,j),

1Y

k=0

X
"(i,j)k
0k

!�

where ⇣ = skUr1, ⇢ = sr1,! = r1, ⌧ = ty, �,= y, "i1 = ri, "i0 = rii, "i =
r1o

�1
i1

, "(i,j)1 = r(i,j), "(i,j)0 = r(i,j)i, "(i,j) = r1o
�1
(i,j)1

while the witnesses are

W
0
i
= a

oi1r
�1
i

Q
w2fV (i)(x

0+w)

i0

and

W
0
(i,j) = a

o(i,j)1
r
�1
(i,j)

(x0+j)
Q

w2fE (i,j)(x
0+w)

(i,j)0
.

Note that the exponent i for vertices and edges can always be swapped with
a randomly selected attribute w.

2. If the proof is verified, signer signs on C1, {Ci, C(i,j)} and an assigned graph
GS as:

v =

0

@C1

Y

i2VU

Ci

Y

(i,j)2EU

C(i,j)b
s
00+...+ēi+...+ē(i,j)+...+dlog

b
(d)

1

A
(x+t)�1

for randomly selected s
00
, t 2 Z⇤

p
. Signer returns (�0 = (t, s00, v),GS) to the

user.
3. If �0 is a valid SDH-CL signature on C1, {Ci, C(i,j)} and GS, user updates his

secret key as skUr1 and graph signature as �interm = (t, sr1+s
00
, v,G, {oi1 , o(i,j)1})

where G = GU + GS.

Remark 2. A user can interact with more than one intermediate signer to accu-
mulate the required graphs.

Final Signing. The final signing protocol is the same as the intermediary signing
protocol except the signer does not assign a new graph. Similarly, the user also
prove the correctness for the Pedersen commitment of his secret key skU:

C1 = h
skUr2b

sr2

27

and the MoniPoly commitment of his hidden graph G = GU [GS:

8i 2 VU : Ci = a
oi2oi1 (x

0+i)
Q

w2fV (i)(x
0+w)

i0
,

8i 2 VS : Ci = a
oi2 (x

0+i)
Q

w2fV (i)(x
0+w)

i0
,

8i 2 EU : C(i,j) = a
o(i,j)2

o(i,j)1
(x0+i)(x0+j)

Q
w2fE (i,j)(x

0+w)

(i,j)0
,

8i 2 ES : C(i,j) = a
o(i,j)2

(x0+i)(x0+j)
Q

w2fE (i,j)(x
0+w)

(i,j)0
,

C2 =
Y

i2V

C
r2o

�1
i2

i

Y

(i,j)2E

C
r2o

�1
(i,j)2

(i,j)

where r2, oi2 , o(i,j)2 2 Z⇤
p
are the random blinding factor. We describe the final

signing protocol as follows:

1. User randomly selects r2, y, oi2 , o(i,j)2 , ri, r(i,j) 2 Z⇤
p
and interacts with the

signer to prove the possession of �interm = (t, s, v, {oi1 , o(i,j)1}) and the
representation of his hidden graph:

PK

⇢
((8i 2 V : "i0 , "i1 , "i), (8(i, j) 2 E : "(i,j)0 , "(i,j)1 , "(i,j)), ⇣, ⇢,!, ⌧, �) :

e
�
C1C2d

!
v
0�⌧

, X00

�
= e(v0� , X) ^ C1C2 = h

⇣
b
⇢
Y

i2V

C
"i

i

Y

(i,j)2E

C
"(i,j)

(i,j) ^

e

0

@
Y

i2V

Ci

Y

(i,j)2E

C(i,j), X00

1

A =

Y

i2V

e

W

0
i
,

1Y

k=0

X
"ik
0k

!
Y

(i,j)2E

e

W

0
(i,j),

1Y

k=0

X
"(i,j)k
0k

!�

where "i1 = ri, "i0 = rii, "(i,j)1 = r(i,j), "(i,j)1 = r(i,j)i. We also have the
witnesses as follows:

8i 2 VU : Wi = a
oi2oi1r

�1
i

Q
w2fV (i)(x

0+w)

i0
,

8i 2 VS : Wi = a
oi2r

�1
i

Q
w2fV (i)(x

0+w)

i0
,

8i 2 EU : W(i,j) = a
o(i,j)2

o(i,j)1
r
�1
(i,j)

(x0+j)
Q

w2fE (i,j)(x
0+w)

(i,j)0
,

8i 2 ES : W(i,j) = a
o(i,j)2

r
�1
(i,j)

(x0+j)
Q

w2fE (i,j)(x
0+w)

(i,j)0

such that the exponent i for vertices and edges can be swapped with a
randomly selected attribute w.

2. If the proof is verified, signer signs on C1 and {Ci, C(i,j)} as:

v =

0

@C1

Y

i2V

Ci

Y

(i,j)2E

C(i,j)b
s
00+dlog

b
(c)

1

A
(x+t)�1

28

for randomly selected s
00
, t 2 Z⇤

p
. Signer returns (�0 = (t, s00, v)) to the user.

3. If �0 is a valid SDH-CL signature on C1 and {Ci, C(i,j)}, user finalizes his
secret key as skUr2 and graph signature as

� = (t, sr2 + s
00
, v,G, {oi1oi2 , o(i,j)1o(i,j)2}, {oi2 , o(i,j)2})

where G = GU + GS.

Remark 3. The proposed scheme can be modified to let the final signer assign
a dummy graph that contains information such as the final signer’s identity,
signing date and a unique signature ID for the purpose of revocation.

6.4 Security of the Graph Signature Scheme

6.4.1 Impersonation Resilience. We establish the security of the graph sig-
nature scheme by constructing a reduction to the (co-)SDH problem. To achieve
tight security reduction, we make use of Multi-Instance Reset Lemma [21] as
the knowledge extractor which requires the adversary A to run N parallel in-
stances of impersonation under active and concurrent attacks. The challenger
C can fulfill this requirement by simulating the N � 1 instances from its given
SDH instance which is random self-reducible [7]. Since this is obvious, we de-
scribe only the simulation for a single instance of impersonation under active
and concurrent attacks in the security proofs.

Theorem 5. If an adversary A (timp, "imp)-breaks the imp-aca-security of the
proposed graph signature scheme, then there exists an algorithm C which (tcosdh, "cosdh)-
breaks the co-SDH problem such that:

"cosdh

tcosdh
=
"imp

timp
,

or an algorithm C which (tsdh, "sdh)-breaks the SDH problem such that:

"imp  N

qp
"sdh � 1 +

1 + (q � 1)!/pq�2

p
+ 1,

timp  tsdh/2N � T (q2).

where N is the total adversary instance, q = Q(O,S) +Q(P,V) is the total query
made to the Obtain and Verify oracles, while T (q2) is the time parameterized by q

to setup the simulation environment and to extract the SDH solution. Consider
the dominant time elements timp and tsdh only, we have:

1�

✓
1� "imp +

1 + (q � 1)!/pq�2

p

◆N
!2

 "sdh, 2Ntimp ⇡ tsdh.

29

Let N = ("imp� 1+(q�1)!/pq�2

p
)�1, we get "sdh � (1�e

�1)2 � 1/3 and the success
ratio is:

"sdh

tsdh
� 1

3 · 2Ntimp

6"sdh
tsdh

� "imp

timp
� 1 + (q � 1)!/pq�2

timpp

which gives a tight reduction.

Similar to the approach in the security proofs for MoniPoly graph signature
scheme [29], we categorize the way an adversary impersonates in Table 1.

Table 1. Types of impersonation and the corresponding assumptions.

Type G MPEncode(G) s t v Adversary Assumption Lemmas

0 0 1 * * * Abind co-DLOG Theorem 3
1 0 0 0 0 0 A1 SDH 1
2 0 0 0 0 1 A1 DLOG 1
3 0 0 0 1 0 A2 SDH 2
4 0 0 0 1 1 A2 DLOG 2
5 0 0 1 0 0 A1 SDH 1
6 0 0 1 0 1 A1 DLOG 1
7 0 0 1 1 0 A3 SDH 3
8 0 0 1 1 1 A3 DLOG 3
9 1 1 0 0 0 A1 SDH 1
10 1 1 0 0 1 A1 DLOG 1
11 1 1 0 1 0 A2 SDH 2
12 1 1 0 1 1 A2 DLOG 2
13 1 1 1 0 0 A1 SDH 1
14 1 1 1 0 1 A1 N/A 1
15 1 1 1 1 0 A3 SDH 3
16 1 1 1 1 1 A3 N/A 3

Note: * = 1 or 0, 1 = queried, 0 = not queried, N/A = not available

We present Lemma 5, 6 and 7 corresponding to the adversaries A1, A2 and
A3 as follows.

Lemma 5. If an adversary A1 (timp, "imp)-breaks the imp-aca-security of the pro-
posed graph signature scheme, then there exists an algorithm C which (tsdh, "sdh)-
solves the SDH problem such that:

"imp  N

qp
"sdh � 1 +

1 + (q � 1)!/pq�2

p
+ 1,

timp  tsdh/2N � T (q2).

30

where N is the total of adversary instances, q = Q(O,S) +Q(P,V) is the number
of queries made to the Obtain and Verify oracles, while T (q2) is the time pa-
rameterized by q to setup the simulation environment and to extract the SDH
solution.

Proof. Given a q-SDH instance (g1, gx1 , g
x
2

1 , . . . , g
x
q

1 , g2, g
x
2) where q = Q(O,S) +

Q(P,V) is the maximum number of queries A1 can issue to the Obtain and Verify

oracles, we show that if A1 exists, there exists an algorithm C which can out-

put (g
1

x+t

1 , t) by acting as the simulator for the graph signature scheme as follows:

Game0. This is the attack by A1 on the real N instances of graph signature
scheme. Let S be the event of a successful impersonation, by assumption, we
have:

Pr[S0] = "imp. (1)

Game1. In order to simulate the environment of the graph signature scheme,
C uniformly and randomly selects distinct ta, {tai

}L
i=1, tb, tc, x

0
, t1, . . . , tq 2 Z⇤

p
.

Next, let f(x) denotes the polynomial f(x) =
Q

q

k=1(x + tk) =
P

q

k=0 ⇢kx
k

and fu(x) denotes the polynomial fu(x) =
Q

q

k=1,k 6=u
(x + tk) =

P
q�1
k=0 �kx

k.

Let g
f(x)
1 =

Q
q

k=0(g
x
k

1)⇢k , C sends (e,G1,G2,GT , p, {a0k = g
f(x)tax

0k

1 , X0k =

g
x
0k

2 }n
k=0, {{aik , Xik

}L
i=1}nk=0, b = g

f(x)tb
1 , c = g

f(x)tc
1 , d = g

f(x)td
1 , h = g

f(x)th
1 , X =

g
x
2) as the public key to A1. C creates two empty lists L(FO,FS) and L(P,V) where
the former stores the corrupted final signatures simulated during the final signing
protocol while the latter stores the non-corrupted signatures simulated during
the showing protocol. C also creates two empty lists L(iO,iS), L(IO,IS) to store
the corrupted initial signatures and intermediary signatures simulated during the
initial and intermediary signing protocols, respectively. Since ta, tb, tc, td, th, x

0

are uniformly random, the distribution of the simulated public key (and the cor-
responding random self-reducible [7] N � 1 instances) is the same as that of the
original scheme. So, we have:

Pr[S1] = Pr[S0]. (2)

Game2. In this game, A1 plays the role of multiple users to concurrently interact
with the initial signer simulated by C. Without loss of generality, we assume every
user u uses di↵erent data set Au = {skUu

, s
0
u
,?,?}. If the u-th session of an

initial signing protocol ends successfully, C produces a signature �init for A1.
Their interaction is as follows:

1. A1 concurrently initializes the initial signing protocol with C by running the
zero-knowledge protocol:

PK{(⇣, ⇢) : C = h
⇣
b
⇢}

Without loss of generality, we assume A1 always execute this protocol hon-
estly. Therefore, C always reset successfully and can extract the secret expo-
nents ⇣ = skUu

, ⇢ = s
0
u
used by A1 in the protocol above.

31

2. C chooses a random value s
00
u
2 Z⇤

p
and a graph GSu

= {VSu
[ESu

} to set:

vu = h
skUu
u

Y

i2VSu

nY

k=0

a
mu,ik

u,ik

Y

(i,j)2ESu

nY

k=0

a
mu,(i,j)k

u,(i,j)k
b
su+s

00
u

u du

where au,ik = g
fu(x)tai

x
0k

1 , bu = g
fu(x)tb
1 , du = g

fu(x)td
1 , {mu,ik

} = MPEncode(i 2
VSu

) and {mu,(i,j)k} = MPEncode((i, j) 2 ESu
). C adds the record (tu, su =

suru,1 + s
00
u
, vu, Au,GSu

) to L(iO,iS) and returns �0
u
= (tu, s00u, vu,GSu

) as the
signature to A1.

Since C’s choices of tu, s00u are independent of A’s view, a collision vi = vj for
some i, j  q in A’s concurrent queries happens with a negligible probability
of Pr[Col] = 1/p in which A1 can compute the discrete logarithm x. Else, C
simulates the InitSign oracle perfectly for every concurrent query and A1 can
formulate its signature �initu = (tu, su = s

0
u
+ s

00
u
, vu,GUu

= GSu
) as in the

original initial signing protocol. This gives:

Pr[S2] = Pr[S1] + Pr[Col]

 Pr[S1] +
q�1Y

i=1

i/p

 Pr[S1] + (q � 1)!/pq�1 (3)

where A1 can make, at most, another q � 1 initial signature queries.

Game3. In this game, A1 plays the role of multiple users to concurrently interact
with the intermediary signer simulated by C. Without loss of generality, we
assume every user u has di↵erent graph Au = {skUu

, s
0
u
,GUu

, {ou,i1 , ou,(i,j)1}}. If
the u-th session of an signing protocol ends successfully, C produces a signature
�interm for A1. Their interaction is as follows:

1. A1 concurrently initializes the signing protocol with C by running the zero-
knowledge protocol:

PK

⇢
((8i 2 VUu

: "i0 , "i1 , "i), (8(i, j) 2 EUu
: "(i,j)0 , "(i,j)1 , "(i,j)), ⇣, ⇢,!, ⌧, �) :

e
�
C1C2d

!
v
0�⌧

, X00

�
= e(v0� , X) ^ C1C2 = h

⇣
b
⇢
Y

i2VUu

C
"i

i

Y

(i,j)2EUu

C
"(i,j)

(i,j) ^

e

0

@
Y

i2VUu

Ci

Y

(i,j)2EUu

C(i,j), X00

1

A =

Y

i2VUu

e

W

0
i
,

1Y

k=0

X
"ik
0k

!
Y

(i,j)2EUu

e

W

0
(i,j),

1Y

k=0

X
"(i,j)k
0k

!�

32

Without loss of generality, we assume A1 always execute this protocol hon-
estly. Therefore, C always reset successfully and can extract the secret ex-
ponents ⇣ = skUu

ru,1, ⇢ = suru,1,! = ru,1, ⌧ = t
0
u
, � = yu, "i1 = ru,i, "i0 =

ru,iiu, "i = ru,1o
�1
u,i1

, "(i,j)1 = ru,(i,j), "(i,j)0 = ru,(i,j)iu, "(i,j) = ru,1o
�1
u,(i,j)1

used by A1 in the protocol above.

2. Using tu = t
0
u
/yu or su = s

0
u
/ru,1, C can search in L(iO,iS) for the GUu

of
this intermediary signature. Next, C chooses a random value s

00
u
2 Z⇤

p
and a

graph GSu
= {VSu

[ESu
} to set:

vu = h
skUuru,1
u

Y

i2VUu

nY

k=0

a
mu,ik

u,ik

!ou,i1 Y

(i,j)2EUu

nY

k=0

a
mu,(i,j)k

u,(i,j)k

!ou,(i,j)1

·

Y

i2VSu

nY

k=0

a
mu,ik

u,ik

Y

(i,j)2ESu

nY

k=0

a
mu,(i,j)k

u,(i,j)k
b
suru,1+s

00
u

u du

where au,ik = g
fu(x)tai

x
0k

1 , bu = g
fu(x)tb
1 , du = g

fu(x)td
1 . C adds the record

(tu, su = suru,1+s
00
u
, vu, Au,GSu

) to L(IO,IS) and returns �0
u
= (tu, s00u, vu,GSu

)
as the signature to A1.

Since C’s choices of tu, s00u are independent of A’s view, a collision vi = vj for
some i, j  q in A’s concurrent queries happens with a negligible probability
of Pr[Col] = 1/p in which A1 can compute the discrete logarithm x. Else, C
simulates the IntermSign oracle perfectly for every concurrent query and A1

can formulate its signature �intermu
= (tu, su = suru,1 + s

00
u
, vu,Gu = GUu

+
GSu

, {ou,i1 , ou,(i,j)1}) as in the original signing protocol. This gives:

Pr[S3] = Pr[S2] + Pr[Col]

 Pr[S2] +
q�2Y

i=1

i/p

 Pr[S2] + (q � 2)!/pq�2 (4)

where A1 can make at most, another, q� 2 intermediary signature queries. The
initial signature will not collide with intermediary signature because C can al-
ways avoid this by choosing another s00

u
.

Game4. In this game, A1 plays the role of multiple users to concurrently interact
with the final signer simulated by C. Without loss of generality, we assume every
user u has di↵erent graph Au = {skUu

, s
0
u
,Gu, {ou,i, ou,(i,j)}}. If the u-th session

of an signing protocol ends successfully, C produces a graph signature � for A1.
Their interaction is as follows:

33

1. A1 concurrently initializes the signing protocol with C by running the zero-
knowledge protocol:

PK

⇢
((8i 2 Vu : "i0 , "i1 , "i), (8(i, j) 2 Eu : "(i,j)0 , "(i,j)1 , "(i,j)), ⇣, ⇢,!, ⌧, �) :

e
�
C1C2d

!
v
0�⌧

, X00

�
= e(v0� , X) ^

C1C2 = h
⇣
b
⇢
Y

i2Vu

C
"i

i

Y

(i,j)2Eu

C
"(i,j)

(i,j) ^

e

0

@
Y

i2Vu

Ci

Y

(i,j)2Eu

C(i,j), X00

1

A =

Y

i2Vu

e

W

0
i
,

1Y

k=0

X
"ik
0k

!
Y

(i,j)2Eu

e

W

0
(i,j),

1Y

k=0

X
"(i,j)k
0k

!�

Without loss of generality, we assume A1 always execute this protocol hon-
estly. Therefore, C always reset successfully and can extract the secret ex-
ponents ⇣ = skUu

ru,2, ⇢ = s
0
u
,! = ru,2, ⌧ = t

0
u
, � = yu, "i1 = ru,i, "i0 =

ru,iiu, "i = ru,2o
�1
u,i2

, "(i,j)1 = ru,(i,j), "(i,j)0 = ru,(i,j)iu, "(i,j) = ru,2o
�1
u,(i,j)2

used by A1 in the protocol above.
2. Using tu = t

0
u
/yu or su = s

0
u
/ru,2, C can search in L(IO,IS) for {Gu, ou,i1 , ou,(i,j)1}

of this final signature. Next, C chooses a random value s
00
u
2 Z⇤

p
to set:

vu = h
skUuru,1
u

Y

i2VUu

nY

k=0

a
mu,ik

u,ik

!ou,i1ou,i2 Y

(i,j)2EUu

nY

k=0

a
mu,(i,j)k

u,(i,j)k

!ou,(i,j)1
ou,(i,j)2

·

Y

i2VSu

nY

k=0

a
mu,ik

u,ik

!ou,i2 Y

(i,j)2ESu

nY

k=0

a
mu,(i,j)k

u,(i,j)k

!ou,(i,j)2

b
s
0
u
+s

00
u

u cu

where au,ik = g
fu(x)tai

x
0k

1 , bu = g
fu(x)tb
1 , cu = g

fu(x)tc
1 . If (tu, su, vu, Au) 2

L(P,V), C removes it from L(P,V). C adds the record to L(FO,FS). C returns
�
0
u
= (tu, s00u, vu) as the signature to A1.

Since C’s choices of tu, s00u are independent of A’s view, a collision vi = vj for
some i, j  q in A’s concurrent queries happens with a negligible probability of
Pr[Col] = 1/p in which A1 can compute the discrete logarithm x. Else, C simu-
lates the FinalSign oracle perfectly for every concurrent query and A1 can formu-
late its signature �u = (tu, su = suru,2 + s

00
u
, vu,Gu, {ou,i1ou,i2 , ou,(i,j)1ou,(i,j)2},

{ou,i2 , ou,(i,j)2}) as in the original signing protocol. This gives:

Pr[S4] = Pr[S3] + Pr[Col]

 Pr[S3] +
q�2Y

i=1

i/p

 Pr[S3] + (q � 2)!/pq�2
. (5)

34

where A1 can make, at most, another q � 2 final signature queries. The final
signature will not collide with the initial signature because they use di↵erent
bases c and d, respectively.

Game5. In this game, A1 plays the role of multiple provers to concurrently inter-
act with the verifier simulated by C. Without loss of generality, we assume every
prover u uses a valid �u to run its show proof on �stmtu such that �stmtu(Au) = 1.
C always simulates the Verify oracle correctly and this gives:

Pr[S5] = Pr[S4]. (6)

Game6. In this game, A1 plays the role of verifier to concurrently interact with
multiple provers simulated by C. When A1 asks for a show proof on �stmtu , C
interacts with A1 using a �u such that �stmtu(Au) = 1. We assume C already
has the appropriate signatures on his hand for these queries. Else, C simulates a
valid �u as in the previous games and adds it to L(P,V) before interacting with
A1. This gives:

Pr[S6] = Pr[S5]. (7)

Game7. In this game, A1 wants to impersonate the prover whose data set is
A

⇤ 6= Ai 2 L(FO,FS) using the predicate �⇤stmt such that �⇤stmt(A
⇤) = 1 and

�
⇤
stmt(Ai) = 0. A1 is still allowed to query the oracles as in previous games but

with the restriction �⇤stmt(Ai) 6= 1 for Ai to the Obtain oracle. Finally, if A1 com-
pletes a show proof forA⇤ such that (AProve

1 (pk, ·,�⇤stmt(A
⇤)), CVerify(pk,�⇤stmt(A

⇤))) =
1, C resets A1 to the time where it has just sent the witnesses. If the show is
proof verified again, C can obtain two valid transcripts and recover the secret
exponents to extract the signature elements (t⇤, s⇤, v⇤).

Since A1 must output t
⇤

/2 {t1, . . . , tq}, if v⇤ /2 L(FO,FS) [L(P,V), C can
construct a polynomial c(x) of degree n� 1 such that f(x) = c(x)(x+ t

⇤) + r to
compute:

v
⇤1/(thskU⇤+

P
i2V

(o⇤
i
tai

P
n

k=0 m⇤
ik

x
0k)+o

⇤
(i,j)

P
(i,j)2E

(ta(i,j)

P
n

k=0 m⇤
(i,j)k

x
0k)+tbs

⇤+tc)r
g
� c(x)

r

1

= g

((thskU⇤+o
⇤
i

P
i2V (tai

Pn

k=0 m⇤
ik

x
0k)+

P
(i,j)2E

(o⇤
(i,j)

ta(i,j)

Pn

k=0 m⇤
(i,j)k

x
0k)+tbs

⇤+tc)f(x)

((thskU⇤+
P

i2V (o⇤
i
tai

P
n

k=0
m⇤
ik

x0k)+
P

(i,j)2E
(o⇤

(i,j)
ta(i,j)

P
n

k=0
m⇤
(i,j)k

x0k)+tbs
⇤+tc)(x+t⇤)r

� c(x)
r

1

= g

c(x)(x+t
⇤)+r

r(x+t⇤) � c(x)
r

1

= g

1
x+t⇤
1

and output (g
1

x+t⇤ , t
⇤) as the solution for the SDH instance. On the other hand,

if we have v
⇤ 2 L(FO,FS) [L(P,V), C can extract the discrete logarithm x to

break the SDH assumption.
Let Pr[Acc] be the probability of C outputs 1 in the showing protocol with

A1, and Pr[Res] be the probability of C resets successfully, by Multi-Instance

35

Reset Lemma [21], we have:

Pr[S7]  Pr[S6] + Pr[Acc]

 Pr[S6] +
N

p
Pr[Res]� 1 + 1/p+ 1

 Pr[S6] +
N

qp
"sdh � 1 + 1/p+ 1. (8)

Summing up the probability from (1) to (8), we have "imp  N

pp
"sdh � 1 +

1/p+1+(q�1)!/pq�1 as required. The time taken by C is at least 2Ntimp due to
reset and interacting with N parallel impersonation instances, in addition to the
environment setup and the final SDH solution extraction that cost T (q2). ut

Lemma 6. If an adversary A2 (timp, "imp)-breaks the imp-aca-security of the pro-
posed graph signature scheme, then there exists an algorithm C which (tsdh, "sdh)-
solves the SDH problem such that:

"imp  N

qp
"sdh � 1 +

1 + (q � 1)!/pq�2

p
+ 1,

timp  tsdh/2N � T (q2).

where N is the total of adversary instances, q = Q(O,S) +Q(P,V) is the number
of queries made to the Obtain and Verify oracles, while T (q2) is the time pa-
rameterized by q to setup the simulation environment and to extract the SDH
solution.

Proof. Given a q-SDH instance (g1, gx1 , g
x
2

1 , . . . , g
x
q

1 , g2, g
x
2) where q = Q(O,S) +

Q(P,V) is the maximum number of queries A2 can issue to the Obtain and Verify

oracles, there exists an algorithm C which can output (g
1

x+t

1 , t) by acting as the
simulator for the graph signature scheme as follows:

Game0. This is the same as the Game0 in Lemma 5 where we have:

Pr[S0] = "imp. (9)

Game1. This is the same as the Game1 in Lemma 5 except that C additionally
checks whether X = g

tu
2 for u 2 {1, . . . , q}. If such tu is found, C outputs the

solution of the SDH instance using the discrete logarithm x = tu. Let fu0,u(x)

denotes the polynomial fu0,u(x) =
Q

q

k=1,k 6=u0,u(x + tk) =
P

q�2
k=0 �kx

k. C uni-
formly selects random distinct s1, . . . , sq 2 Z⇤

p
and sends (e,G1,G2,GT , p, {a0k =

g
f(x)tax

0k

1 , X0k = g
x
0k

2 }n
k=0, {{aik , Xik

}L
i=1}nk=0, b = g

f(x)tb�
P

q

u=1 fu(x)
1 , c = g

f(x)tc+
P

q

u=1 sufu(x)
1 ,

d = g
f(x)td+

P
q

u=1 sufu(x)
1 , h = g

f(x)th
1 , X = g

x
2) as the public key toA2. This gives:

Pr[S1]  Pr[S0]. (10)

Game2. This is the same as the Game2 in Lemma 5 except that, after resetting
A2, C simulates the signature �0

u
= (tu, s00u, vu) for Au = {skUu

, s
0
u
,?,?} and

36

GSu
= {VSu

[ESu
} such that:

vi = h
skUuru,1
u

Y

i2VSu

nY

k=0

a
mu,ik

u,ik

Y

(i,j)2ESu

nY

k=0

a
mu,(i,j)k

u,(i,j)k
b
s
0
u
+(su�s

0
u
)

u du

where s
00
u
= su � s

0
u
. When the protocol ends, A2 can compile the intermediary

signature as �initu = (tu, su = s
0
u
+s

00
u
, vu,GUu

= GSu
). As C simulates the InitSign

oracle perfectly, we have:

Pr[S2]  Pr[S1] + (q � 1!)/pq�1
. (11)

where A1 can make, at most, another q � 1 initial signature queries.

Game3. This is the same as the Game3 in Lemma 5 except that, after resetting
A2, C simulates the signature �0

u
= (tu, s00u, vu) forAu = {skUu

, s
0
u
,GUu

, {ou,i1 , ou,(i,j)1}}
and GSu

such that:

vi = h
skUuru,1
u

Y

i2VUu

nY

k=0

a
mu,ik

u,ik

!ou,i1 Y

(i,j)2EUu

nY

k=0

a
mu,(i,j)k

u,(i,j)k

!ou,(i,j)1

·

Y

i2VSu

nY

k=0

a
mu,ik

u,ik

Y

(i,j)2ESu

nY

k=0

a
mu,(i,j)k

u,(i,j)k
b
s
0
u
+(su�s

0
u
)

u du

where s
00
u
= su � s

0
u
. When the protocol ends, A2 can compile the intermediary

signature as �intermu
= (tu, su = s

0
u
+ s

00
u
, vu,GUu

, {ou,i1 , ou,(i,j)1},GSu
). As C

simulates the IntermSign oracle perfectly, we have:

Pr[S3]  Pr[S2] + (q � 2!)/pq�2
. (12)

where A1 can make, at most, another q � 2 intermediary signature queries.

Game4. This is the same as the Game4 in Lemma 5 except that, after resetting
A2, C simulates the signature �0

u
= (tu, s00u, vu) forAu = {skUu

, s
0
u
,Gu, {ou,i, ou,(i,j)}}

such that:

vi = h
skUuru,1
u

Y

i2VUu

nY

k=0

a
mu,ik

u,ik

!ou,i1ou,i2 Y

(i,j)2EUu

nY

k=0

a
mu,(i,j)k

u,(i,j)k

!ou,(i,j)1
ou,(i,j)2

·

Y

i2VSu

nY

k=0

a
mu,ik

u,ik

!ou,i2 Y

(i,j)2ESu

nY

k=0

a
mu,(i,j)k

u,(i,j)k

!ou,(i,j)2

b
s
0
u
+(su�s

0
u
)

u cu

where s00
u
= su� s

0
u
. When the protocol ends, A2 can compile the final signature

as �u = (tu, su = s
0
u
+ s

00
u
, vu,Gu, {ou,i, ou,(i,j)}). As C simulates the FinalSign

oracle perfectly, we have:

Pr[S4]  Pr[S3] + (q � 2!)/pq�2
. (13)

37

where A1 can make, at most, another q � 2 final signature queries.

Game5. This is the same as the Game5 in Lemma 5 and we have:

Pr[S5] = Pr[S4]. (14)

Game6. This is the same as the Game6 in Lemma 5 and we have:

Pr[S6] = Pr[S5]. (15)

Game7. Similar to the Game7 in Lemma 5, C can reset A2 to extract the
elements (t⇤, s⇤, v⇤) of �⇤ where v

⇤ has the form:

v
⇤ =

✓
g
f(x)(thskU⇤+

P
i2V

(o⇤
i
tai

P
n

k=0 m⇤
ik

x
0k)+

P
(i,j)2E

(o⇤(i,j)ta(i,j)

P
n

k=0 m⇤
(i,j)k

x
0k)+s

⇤
tb+tc)

1 ·

g

P
q

u0=1,u0 6=u
(s

u0�s
⇤)f

u0 (x)+(su�s
⇤)fu(x)

1

◆1/(x+tu)

.

Since A2 must output t⇤ = tu 2 {t1, . . . , tq} but s⇤ 6= su 2 {s1, . . . , sq} for an
u 2 {1, . . . , q}, C proceeds to compute c(x) of degree q � 2 and r 2 Z⇤

p
from the

knowledge of {t1, . . . , tq} such that fu(x) = c(x)(x + tu) + r. Moreover, it will
be the case v

⇤
/2 L(FO,FS) [L(P,V) or C already found x = tu during Game1.

Subsequently, C calculates:
✓
v
⇤
/g

fu(x)(thskU⇤+
P

i2V
(o⇤

i
tai

P
n

k=0 m⇤
ik

x
0k)+

P
(i,j)2E

(o⇤(i,j)ta(i,j)

P
n

k=0 m⇤
(i,j)k

x
0k)+s

⇤
tb+tc)

1 ·

g

P
q

u0=1,u0 6=u
(s

u0�s
⇤)f

u0,u(x)+c(x)(su�s
⇤)

1

◆ 1
r(su�s⇤)

= g

(fu(x)�c(x)(x+tu))(su�s
⇤)

r(su�s⇤)(x+tu)

1

= g

1
x+tu

1

and outputs (g
1

x+tu

1 , tu) as the solution for the SDH instance. Therefore, we have:

Pr[S5]  Pr[S4] +
N

qp
"sdh � 1 + 1/p+ 1 (16)

and summing up the probability from (10) to (16), we have "imp  N

pp
"sdh � 1+

1/p+ 1 + (q � 1)!/pq�1 as required. The time taken by C is at least 2Ntimp due
to reset and interacting with N parallel impersonation instances, in addition to
the environment setup and the final SDH solution extraction that cost T (q2).

ut
Lemma 7. If an adversary A3 (timp, "imp)-breaks the imp-aca-security of the pro-
posed graph signature system, then there exists an algorithm C which (tsdh, "sdh)-
solves the SDH problem such that:

"imp  N

qp
"sdh � 1 +

(q � 1)!/pq�2

p
+ 1,

timp  tsdh/2N � T (q2).

38

where N is the total of adversary instances, q = Q(O,S) +Q(P,V) is the number
of queries made to the Obtain and Verify oracles, while T (q2) is the time pa-
rameterized by q to setup the simulation environment and to extract the SDH
solution.

Proof. Given a q-SDH instance (g1, gx1 , g
x
2

1 , . . . , g
x
q

1 , g2, g
x
2) where q = Q(O,S) +

Q(P,V) is the maximum number of queries A3 can make to the Obtain and Verify

oracles, there exists an algorithm C which can output (g
1

x+t

1 , t) by acting as the
simulator for the graph signature scheme as follows:

Game0. This is the same as the Game0 in Lemma 5 and we have:

Pr[S0] = "imp. (17)

Game1. The precomputations and checking are the same as the Game1 in

Lemma 6 but (e,G1,G2,GT , p, {a0k = g
f(x)t0�

P
q

u=1 fu(x)
1 , X0k = g

x
0k

2 }n
k=0, {{aik ,

Xik
}L
i=1}nk=0, b = g

f(x)tb�
P

q

u=1 fu(x)
1 , c = g

f(x)tc+
P

q

u=1 zufu(x)
1 , X = g

x
2 , X0 =

g2, X1 = X
x
0

0 , . . . , Xn = X
x
0n

0) as the public key to A3 where the random
z1, . . . , zq 2 Z⇤

p
are uniformly distributed. This gives:

Pr[S1]  Pr[S0]. (18)

Game2. This is the same as the Game2 in Lemma 5 except that, after resetting
A3, C simulates the signature �0

u
= (tu, s00u, vu) for Au = {skUu

, s
0
u
,?,?} and

GSu
= {VSu

[ESu
} by letting

su = zu �
Y

i2VSu

(x0 + i)
Y

w2fV(i)

(x0 +w)�
Y

(i,j)2ESu

(x0 + i)(x0 + j)
Y

w2fE(i,j)

(x0 +w)

where:

vi = g
f(x)(thskU⇤+

P
i2V

(tai

P
n

k=0 m⇤
ik

x
0k)+

P
(i,j)2E

(ta(i,j)

P
n

k=0 m⇤
(i,j)k

x
0k)+s

⇤
tb+tc)

1 ·

g

P
q

u0=1,u0 6=u2
(z

u0�zu2)fu0,u2
(x)

1

= h
skUuru,1
u

Y

i2VSu

nY

k=0

a
mu,ik

u,ik

Y

(i,j)2ESu

nY

k=0

a
mu,(i,j)k

u,(i,j)k
b
s
0
u
+(su�s

0
u
)

u du

where s
00
u

= su � s
0
u
. When the protocol ends, A3 compiles the signature as

�
0
initu

= (tu, su = s
0
u
+ s

00
u
, vu,GUu

= GSu
). As C simulates the InitSign oracle

perfectly, we have:

Pr[S2]  Pr[S1] + (q � 1)!/pq�1
. (19)

where A1 can make, at most, another q � 1 initial signature queries.

39

Game3. This is the same as the Game3 in Lemma 5 except that, after resetting
A3, C simulates the signature �0

u
= (tu, s00u, vu) forAu = {skUu

, s
0
u
,GUu

, {ou,i1 , ou,(i,j)1}}
and GSu

by letting

su = zu�
Y

i2VUu

ou,i1(x
0 + i)

Y

w2fV(i)

(x0 + w)�

Y

(i,j)2EUu

ou,(i,j)1(x
0 + i)(x0 + j)

Y

w2fE(i,j)

(x0 + w)�

Y

i2VSu

(x0 + i)
Y

w2fV(i)

(x0 + w)�
Y

(i,j)2ESu

(x0 + i)(x0 + j)
Y

w2fE(i,j)

(x0 + w)

where:

vi = h
skUuru,2
u

Y

i2VUu

nY

k=0

a
mu,ik

u,ik

!ou,i1 Y

(i,j)2EUu

nY

k=0

a
mu,(i,j)k

u,(i,j)k

!ou,(i,j)1

·

Y

i2VSu

nY

k=0

a
mu,ik

u,ik

Y

(i,j)2ESu

nY

k=0

a
mu,(i,j)k

u,(i,j)k
b
s
0
u
+(su�s

0
u
)

u du

and s
00
u

= su � s
0
u
. When the protocol ends, A3 compiles the signature as

�
0
intermu

= (tu, su = s
0
u
+ s

00
u
, vu,GUu

, {ou,i1 , ou,(i,j)1},GSu
). As C simulates the

IntermSign oracle perfectly, we have:

Pr[S3]  Pr[S2] + (q � 2)!/pq�2
. (20)

where A1 can make, at most, another q � 2 intermediary signature queries.

Game4. This is the same as the Game4 in Lemma 5 except that, after resetting
A3, C simulates the signature �0

u
= (tu, s00u, vu) for {skUu

, s
0
u
,Gu, {ou,i, ou,(i,j)}}

by letting

su = zu�
Y

i2VUu

ou,i1ou,i2(x
0 + i)

Y

w2fV(i)

(x0 + w)�

Y

(i,j)2EUu

ou,(i,j)1ou,(i,j)2(x
0 + i)(x0 + j)

Y

w2fE(i,j)

(x0 + w)�

Y

i2VSu

ou,i2(x
0 + i)

Y

w2fV(i)

(x0 + w)�
Y

(i,j)2ESu

ou,(i,j)2(x
0 + i)(x0 + j)

Y

w2fE(i,j)

(x0 + w)

where:

vi = h
skUuru,2
u

Y

i2VUu

nY

k=0

a
mu,ik

u,ik

!ou,i1ou,i2 Y

(i,j)2EUu

nY

k=0

a
mu,(i,j)k

u,(i,j)k

!ou,(i,j)1
ou,(i,j)2

·

Y

i2VSu

nY

k=0

a
mu,ik

u,ik

!ou,i2 Y

(i,j)2ESu

nY

k=0

a
mu,(i,j)k

u,(i,j)k

!ou,(i,j)2

b
s
0
u
+(su�s

0
u
)

u du

40

and s
00
u

= su � s
0
u
. When the protocol ends, A3 compiles the signature as

�
0
u
= (tu, su = s

0
u
+ s

00
u
, vu,Gu, {ou,i, ou,(i,j)}). As C simulates the FinalSign oracle

perfectly, we have:

Pr[S4]  Pr[S3] + (q � 2)!/pq�2
. (21)

where A1 can make, at most, another q � 2 final signature queries.

Game5. This is the same as the Game5 in Lemma 5 and we have:

Pr[S4] = Pr[S4]. (22)

Game6. This is the same as the Game6 in Lemma 5 and we have:

Pr[S6] = Pr[S6]. (23)

Game7. By definition, A3 must output t
⇤ = tu 2 {t1, . . . , tq} and s

⇤ = su 2
{s1, . . . , sq} for a u 2 {1, . . . , q}. Note that it must be the case v

⇤
/2 L(FO,FS) [

L(P,V) or x = tu has been found during Game1. In the unlikely case of Type 16
forgery A

⇤ 2 L(P,V) which happens with probability 1/p, C aborts. Similar to the
Game7 in Lemma 5, C can reset A3 to extract the signature elements (t⇤, s⇤, v⇤).
C proceeds to compute c(x) of degree q � 2 and the remainder r 2 Z⇤

p
from the

knowledge of {t1, . . . , tq} such that fu(x) = c(x)(x + tu) + r. Subsequently, C
calculates:

✓
v
⇤
/g

fu(x)(thskU⇤+
P

i2V
(tai

P
n

k=0 m⇤
ik

x
0k)+

P
(i,j)2E

(ta(i,j)

P
n

k=0 m⇤
(i,j)k

x
0k)+s

⇤
tb+tc)

1 ·

g

P
q

u0=1,u0 6=u
(z

u0�z
⇤)f

u0,u2
(x)+(z

u0�z
⇤)c(x)

1

◆r(zu�z
⇤)

= g

(fu(x)�c(x)(x+tu))(zu�z
⇤)

(x+tu)r(zu�z⇤)

1

= g

1
x+tu

1

and outputs (g
1

x+tu

1 , tu) as the solution for the SDH instance. Therefore, we have:

Pr[S7]  Pr[S6] +
N

qp
"sdh � 1 + 1 (24)

and summing up the probability from (17) to (24), we have "imp  N

pp
"sdh � 1+

1 + (q � 1)!/pq�1 as required. The time taken by C is at least 2Ntimp due to
reset and interacting with N parallel impersonation instances, in addition to the
environment setup and the final SDH solution extraction which cost T (q2). ut

Combining Theorem 2, Lemmas 5, 6, and 7 gives Theorem 5 as required.

41

6.4.2 Unlinkability. Next, we prove the unlinkability of the proposed graph
signature scheme. It is su�cient to show that the witnesses, the committed graph
in the signing protocols and showing protocols are perfectly hiding. Then, we
demonstrate that every instance of the protocols is uniformly distributed due to
the random self-reducibility property. This implies that even when A is given
access to the Obtain, Prove, Verify and Corrupt oracles, it does not has advantage
in guessing the challenged graphs.

Lemma 8. The initialization of the signing protocol in the graph signature scheme
has random self-reducibility.

Proof. We use initial signing protocol as an example. Let Gen = KeyGen, P =
user, V = signer, pk = C and sk = (skUu

, s
0), we define the algorithms Rerand,

Derand and Tran as follows:

– Rerand(C) randomly selects ⇢ 2 Z⇤
p
and outputs C 0 = C

⇢ where C = h
skUb

s
0

is the commitment generated by user. For all (C, skU, s0), (C 0
, sk

0
U, s

00) has
the same uniform distribution as another (C 00

, sk
00
U, s

000) which would have
been generated by user.

– Derand(C,C 0
, sk

0
U, s

00), ⇢) outputs (skU, s0) = ({sk0U/⇢}, s00/⇢) for all (C 0
, ⇢) 2

Rerand(C).

– Tran(C,C 0
, ⇢, (C̃ 0

, e
0
, { ˆskU

0
}, ŝ00)) outputs (C̃ = C̃

01/⇢
, { ˆskU} = { ˆskU

0
/⇢}, ŝ0 =

ŝ
00
/⇢ for all (C 0

, ⇢) 2 Rerand(C). The transcript (C̃, e
0
, { ˆskU}, ŝ0) is valid wrt.

C if (C̃ 0
, e

0
, { ˆskU

0
}, ŝ00) is valid wrt. C 0.

ut

Lemma 9. The blinded graph signature is perfectly hiding.

Proof. This has been proven in the previous work [29]. ut

Lemma 10. The showing protocol of the graph signature scheme o↵ers random
self-reducibility.

Proof. The proof is similar to that of Lemma 8 as well as to the previous
work [29]. ut

Theorem 6. If the signing protocols are performed in secure channels and the
showing protocols have random self-reducibility, and their witnesses, committed
graph as well as the blinded graph signature are perfectly hiding, the graph sig-
nature scheme is gunl-aca-secure.

Proof. We show that an adversary A can win the aunl-aca-security game only
with a negligible advantage "gunl, with respect to the graph signature scheme
simulator C.

Game0. This is an attack on the original graph signature scheme. Let S0 denotes
a successful distinguishing attempt, by definition we have:

Pr[S0]  "gunl +
1

2
. (25)

42

Game1. C generates (pk, sk) as in the original algorithm and forwards to A so
that the latter can play the role of user and signer. In addition, C maintains four
list L(iO,iS), L(IO,IS), L(FO,FS), L(P,V) for corrupted signing protocols and show-
ing protocols, respectively. Since C does not alter the key generation algorithm,
this gives:

Pr[S1] = Pr[S0]. (26)

Game2. When A act as the user to concurrently interact with signers, C sim-
ulates Obtain oracle to produce the corresponding signature �i for the user in
the i-th session, as well as adding the related information into the correspond-
ing lists L(iO,iS), L(IO,IS), L(FO,FS). Without lost of generality, we assume every
user uses di↵erent data set Ai. Since our graph signature works in the secure
channel, it is clear that every transcript is well hidden. If it is the hybrid ElGa-
mal encryption that is hiding the transcripts, its ciphertext indistinguishability
security also hides the transcripts from the adversary. Moreover, every protocol
session is uniformly distributed by Lemma 8. This gives:

Pr[S2] = Pr[S1]. (27)

Game3. Comparing to the previous games, A additionally queries the sign-
ing protocol transcript of the i-th session to the Corrupt oracle. C searches in
L(iO,iS), L(IO,IS), L(FO,FS) to return the internal state and the random expo-
nents used in completing the protocol. By Lemma 8, for any two signing tran-
scripts returned by Corrupt, the distribution of their transcripts are identical to
each other from the view of A. Following Lemma 11 to Lemma 16, this is true
even for the non-uniformly distributed graphs Gi which have been hidden by oi

and o(i,j). Since A does not gain any advantage, we have:

Pr[S3] = Pr[S2]. (28)

Game4. Now A also acts as the verifier to concurrently interact with C as the
provers for multiple signatures. C runs the i-th session of a showing protocol for
�i = (ti, si, vi,Gi, {oi, o(i,j)}). Without loss of generality, we assume A always
requests for successful show proofs where �stmt(Ai) = 1.

The interaction is the same as in the original show proof from the view of
A. Moreover, Lemma 9 shows that the blinded signature is perfectly hiding and
Lemma 10 indicates every protocol session is uniformly distributed. This gives:

Pr[S4] = Pr[S3]. (29)

Game5. In contrast to the previous games, A also queries the showing protocol
transcript of the i-th session to the Corrupt oracle. C searches in L(P,V) to return
the internal state and the random exponents used in completing the protocol. By
Lemma 10, for any two witness sets in a showing protocol returned by Corrupt,
the distribution of their transcripts are identical from the view of A. Following
Lemma 9, this is true even if A knows some final signatures � from the signing

43

protocols, which now have been perfectly hidden by (ri, yi). A can also act as a
prover in which it does not gain useful information. We have:

Pr[S5] = Pr[S4] (30)

where A does not gain any advantage from the query.

Game6. When A decides two data sets A0 and A1 as well as the predicate �⇤stmt

which he wishes to challenge such that �⇤stmt(A0) = �
⇤
stmt(A1) = 1, C randomly

decides a bit b 2 {0, 1} and play the user role to run the challenge signing
protocols with A for Ab and A1�b, respectively. When the final signing protocols
are completed, C obtains two signatures �b and �1�b. In the same order, C uses
�b and �1�b to complete the challenge show proof with A as the verifier. A can
request polynomially many times of show proofs. From time to time, A still
can query the oracles as before with the restriction of querying the challenge
transcripts to Corrupt. Finally, if A makes a correct guess b

0 = b, it breaks the
graph unlinkability with the probability:

Pr[S6] = Pr[S5]

= Pr[b0 = b]

=
1

2
+ "gunl. (31)

Combining the probability from equation (25) to (31), we have a negligible "gunl
as required and A runs in time tgunl. ut

Using the similar approach, we show that the security of protocol unlinka-
bility also holds for the proposed graph signature scheme.

Theorem 7. If the showing protocols have random self-reducibility, and their
witnesses, committed graph as well as the blinded graph signature are perfectly
hiding, the graph signature scheme is punl-aca-secure.

Proof. The proof is the same as that of Theorem 6 except Game6:

Game6. When A decides two graphs A0 and A1 as well as the access policy
�
⇤
stmt which he wishes to challenge such that �⇤stmt(A0) = �

⇤
stmt(A1) = 1, C ran-

domly decides a bit b1 2 {0, 1} and play the user role to run the challenge
signing protocols with A for Ab1 and A1�b1 , respectively. When the final signing
protocols are completed, C obtains two signatures �b1 and �1�b1 . C randomly
decides another bit b2 2 {0, 1} and uses �b2 and �1�b2 to complete the chal-
lenge showing protocol with A as the verifier. A can request polynomially many
times of show proofs. From time to time, A still can query the oracles as before
with the restriction of querying the challenge transcripts to Corrupt. Finally, if
A makes a correct guess (⇡(O,I),⇡(P,V)) such that �⇡(O,I)

= �⇡(P,V)
, it breaks the

44

full protocol unlinkability of the graph signature scheme with the probability:

Pr[S6] = Pr[S5]

= Pr[�⇡(O,I)
= �⇡(P,V)

]

=
1

2
+ "punl. (32)

Therefore, we have a negligible "punl as required and A runs in time tpunl. ut

7 An E�cient Proof System on Graph Predicates

7.1 Proof of Knowledge Predicates

Our proposed new graph signature scheme can support all predicate statements
o↵ered by Groß’ graph signature [18, 19]. For instance, Groß’ partition statement
is implicitly realized by our vertices statement. The disjoint statement in Groß’
scheme proves the pair-wise di↵erences of vertices and edges in a graph but
this has been indirectly done by our vertices and edges through their proof of
cumulative products. Our disjoint statement is based on the NAND proof of the
MoniPoly ABC [28, 29] which proves that a queried graph G0 does not appear in
the graph signature. Table 2 displays the supported statements in a predicate.
The following sub-sections explain the corresponding constructions.

Table 2. Proof of knowledge predicate for graph signature.

Statement Description

set(G0) Representation of a set G0 ✓ G, based on AND(G0).
disjoint(G0) Graph disjointness (G0 \ G) = ;, based on NAND(G0).
cover(`,G0) Graph coverage |G0 \ G| � `, based on ANY(`,G0).

vertices Proof of composition of graph vertices, based on set.
edges Proof of composition of graph edges, based on set.
possession Proof of possession of a graph signature � on the graph G = (V [E).

edge(i, j) Adjacency of (i, j) is a set statement on an edge identifier.

connected(i, j, `)
Existence of the `-path between vertices i and j, based on edges and
set statements.

isolated(i, j) Isolation of vertices i and j, based on set and disjoint.

Note: AND, NAND, ANY are show proofs adapted from the MoniPoly ABC system [28, 29].

7.2 Proof of Possession

The proof of possession is specified by the �possession predicate. It is a compound
proof of knowledge on the validity of prover’s blinded final graph signature �0

45

and its encoded graph G = (V [E). Prover can interact with the verifier to
construct the proof of possession as follows:

PK

(
(8i 2 V : "i0 , "i1), (8(i, j) 2 E : "(i,j)0 , "(i,j)1), ⇣, ⇢,!, ⌧, �) :

Y

i2V

e
�
W

0
i
, X

"i1
01 X

"i0
00

� Y

(i,j)2E

e

⇣
W

0
(i,j), X

"(i,j)1
01 X

"(i,j)0
00

⌘
·

e
�
h
⇣
b
⇢
c
!
v
0�⌧

, X00

�
= e(v0� , X)

)

where v0, {W 0
i
,W

0
(i,j)} are the public inputs. Note that the prover can set {"j , "(i,j)}

as an attribute randomly chosen from the vertex and edge attributes, respec-
tively.

Remark 4. Proving the knowledge of {"i, "(i,j)} is a must in the possession state-
ment. It should not be replaced by a witness W such that the equation

e
�
Wh

⇣
b
⇢
c
!
v
0�⌧

, X00

�
= e(v0� , X)

holds. This is because an adversary knowing the quadruple (v0,W, h
rskUb

rs
c
r
v
rt
, v

r)
from the transcript can easily create another valid quadruple:

(v00 = v
0y
,W

0 =

✓
Wh

rskUb
rs
c
r
v
rt

hsk0
Ubs

0
cvt

0

◆z

, h
zsk

0
Ub

zs
0
c
z
v
00zt0

, v
00z)

such that:

e

⇣
W

0
h
r
0
sk

0
Ub

r
0
s
0
c
r
0
v
r
0
t
0
, X00

⌘
= e(v00z, X).

We highlight that this feature is useful for a group signature scheme. Con-
cisely, viewing the graph signing protocol as the group joining protocol, (t, s, v)
is the group user secret key. Let W combine all elements at the left hand
side, the validity of the group user secret key can be proven by the equation
e (W,X00) = e(v00, X). Subsequently, the signing and verification can be con-
structed by using the Fiat-Shamir paradigm.

7.3 set Proof

When the verifier requests a show proof for the predicate �set(G0), i.e., showing
a sub-graph G0 = (V 0 [E

0) is inside the graph G such that G0 ✓ G, prover can

46

interact with the verifier to construct the set proof as follows:

PK

(
((8i 2 V \ V 0 : "i0 , "i1), (8(i, j) 2 E \ E0 : "(i,j)0 , "(i,j)1), ⇣, ⇢,!, ⌧, �) :

Y

i2V \V 0

e
�
W

0
i
, X

"i1
01 X

"i0
00

� Y

(i,j)2E\E0

e

⇣
W

0
(i,j), X

"(i,j)1
01 X

"(i,j)0
00

⌘
·

Y

i2V 0

e

0

@W
0
i
,

|V 0
i
|Y

k=0

X
mik

0k

1

A
Y

(i,j)2E0

e

0

@W
0
(i,j),

|E0
(i,j)|Y

k=0

X
m(i,j)k
0k

1

A ·

e
�
h
⇣
b
⇢
c
!
v
0�⌧

, X00

�
= e(v0� , X)

)
.

The correctness for the witnesses {Wi,W(i,j)} for the queried graph G0 can be
verified from the following:

e

0

@
Y

i2V 0

Ci

Y

(i,j)2E0

C(i,j), X00

1

A

=
Y

i2V 0

e

✓
a
roi(x

0+i)
Q

w2fV (i)(x
0+w)

i0
, X00

◆ Y

(i,j)2E0

e

✓
a
ro(i,j)(x

0+i)(x0+j)
Q

w2fE (i,j)(x
0+w)

(i,j)0
, X00

◆

=
Y

i2V 0

e

✓
a
roi

i0
, X

(x0+i)
Q

w2fV (i)(x
0+w)

00

◆ Y

(i,j)2E0

e

✓
a
ro(i,j)

(i,j)0
, X

(x0+i)(x0+j)
Q

w2fE (i,j)(x
0+w)

00

◆

=
Y

i2V 0

e

0

@W
0
i
,

|V 0
i
|Y

k=0

X
mik

0k

1

A
Y

(i,j)2E0

e

0

@W
0
(i,j),

|E0
(i,j)|Y

k=0

X
m(i,j)k
0k

1

A

The set proof above gives rise to some diversification and we describe a few which
we think are important for a graph signature scheme:

1. �set(V 0): remove
Q

(i,j)2E0 e

✓
W

0
(i,j),

✓Q|E0
(i,j)|

k=0 X
m(i,j)k
0k

◆"(i,j)
◆
.

2. �set(E0): remove
Q

i2V 0 e

⇣
W

0
i
,

⇣Q|V 0
i
|

k=0 X
m0k
0k

⌘"i⌘
.

3. �set(Ai): given labels Ai ⇢ V
0
i
, replace

Q
i2V 0 e

⇣
W

0
i
,

⇣Q|V 0
i
|

k=0 X
m0k
0k

⌘"i⌘
with

e

⇣
W

0
i
,

⇣Q|Ai|
k=0 X

mik

0k

⌘"i⌘
.

4. �set(A(i,j)): given labelsA(i,j) ⇢ E
0
(i,j), replace

Q
(i,j)2E0 e

✓
W

0
(i,j),

✓Q|E0
(i,j)|

k=0 X
m(i,j)k
0k

◆"(i,j)
◆

with e

⇣
W

0
(i,j),

⇣Q|A(i,j)|
k=0 X

m(i,j)k
0k

⌘"(i,j)⌘
.

5. Complex cases: given �set(i1,...,i`) and additionally asked to prove the con-
nection among the vertex identifiers.

Lemma 11. The randomization of G0 in the set predicate is perfectly hiding.

47

Proof. The blinding factors oi, o(i,j) act as the opening values and turns the G2

elements into MoniPoly commitments:

Y

i2V 0

e

0

@a
r

i0
,

0

@
|V 0

i
|Y

k=0

X
mik

0k

1

A
oi
1

A
Y

(i,j)2E0

e

0

@a
r

(i,j)0
,

0

@
|E0

(i,j)|Y

k=0

X
m(i,j)k
0k

1

A

o(i,j)1

A

which are perfectly hiding. Moreover, the GT elements also form a Pedersen set
commitment:

Y

i2V 0

e

0

@a
r

i0
,

|V 0
i
|Y

k=0

X
mik

0k

1

A
oi

Y

(i,j)2E0

e

0

@a
r

(i,j)0
,

|E0
(i,j)|Y

k=0

X
m(i,j)k
0k

1

A

o(i,j)

that is perfectly hiding according to Lemma 14. ut

7.4 cover Proof

If a prover is requested to prove the knowledge of ` out of all vertices and edges
in a set proof, it becomes a coverage proof cover. To be precise, when the verifier
requests a show proof for the predicate �cover(`,G0), the prover proves that part
of G0 is in G such that |G0 \ G| � `, without verifier knowing what (G0 \ G) is.
The protocol can be executed as follows:

PK

(
(8i 2 V : "i0 , "i1), (8(i, j) 2 E : "(i,j)0 , "(i,j)1), (8i 2 V

0 � V : "i0 , "i1),

(8(i, j) 2 E
0 � E : "(i,j)0 , "(i,j)1), ⇣, ⇢,!, ⌧, �) :Y

i2(V 0\V)

e
�
W

0
i
, X

"i1
01 X

"i0
00

� Y

(i,j)2(E0\E)

e

⇣
W

0
(i,j), X

"(i,j)1
01 X

"(i,j)0
00

⌘
·

Y

i2(V�V 0)

e
�
W

0
i
, X

"i1
01 X

"i0
00

� Y

(i,j)2(E�E0)

e

⇣
W

0
(i,j), X

"(i,j)1
01 X

"(i,j)0
00

⌘
·

e
�
h
⇣
b
⇢
c
!
v
0�⌧

, X00

�
= e(v0� , X)^

Y

i2V 0

e
�
W

0
i
, X

"i1
01 X

"i0
00

� Y

(i,j)2E0

e

⇣
W

0
(i,j), X

"(i,j)1
01 X

"(i,j)0
00

⌘
=

Y

i2V 0

e

0

@W
0
i
,

|V 0
i
|Y

k=0

X
mik

0k

1

A
Y

(i,j)2E0

e

0

@W
0
(i,j),

|E0
(i,j)|Y

k=0

X
m(i,j)k
0k

1

A
)

where v
0
, {W 0

i
,W

0
(i,j)} are the public inputs. The details for the exponents are

{mik
} = MPEncode(V 0

i
), {m(i,j)k} = MPEncode(E0

(i,j)), ⇣ = r ⇥ skU, ⇢ = s
0
,! =

r, "i1 = ri, "(i,j)1 = r(i,j), ⌧ = t
0
, � = y for the randomly chosen blinding factors

r, y, ri, r(i,j) 2 Z⇤
p
. The same diversification for set proof is applicable to the cover

proof.

48

Lemma 12. The randomization of G0 in the cover predicate is perfectly hiding
if G0 2 GU.

Proof. The proof is similar to that of Lemma 11. ut

7.5 disjoint Proof

When the verifier requests a show proof for the predicate �disjoint(G0), i.e., showing
a sub-graph G0 = (V 0 [E

0) is not inside the graph G, it is su�cient to show that
the vertices in both graphs are disjoint such that (V 0\G) = ;. In order to achieve
this, the prover needs to separate the vertex sets from the edges set. This can
be done by making use of the vertices predicate as well as the set membership
proof for edge identifiers from the edges predicate. The latter is because proving
a commitment has two vertex identifiers implicitly proves that it is an edge. The
disjoint predicate is as follows:

PK

(
((8i 2 V : "i0 , "i1), (8(i, j) 2 E : "(i,j)0 , "(i,j)1 , "(i,j)2), ⇣, ⇢,!, ⌧, �, {↵k}|V

0|�1
k=0) :

Y

i2V

e

W

0
i
,

1Y

k=0

X
"ik
0k

!
Y

(i,j)2E

e

W

0
(i,j),

2Y

k=0

X
"(i,j)k
0k

!
·

e
�
h
⇣
b
⇢
c
!
v
0�⌧

, X0

�
= e(v0� , X)^

vertices(V) ^ "(i,j)[C(i,j)E] 2 ⌅V^

e (a00 ,WV`
) = e

0

@WV ,

|V 0|Y

k=0

X
mk

00

1

A e

0

@
|V 0|�1Y

k=0

a
↵k

00 , X0k

1

A ^ 1G 6=
|V 0|�1Y

k=0

a
↵k

00

)

where {mk} = MPEncode(8ī 2 V
0) and WV`

is provided by vertices.

Lemma 13. The disjoint predicate is perfectly hiding.

Proof. The proof is similar to that of Lemma 1 and 11. ut

In Groß’ graph signature scheme [18], the pool of bases are deliberately sep-
arated for vertices and edges. If we also apply the same setting, we get a more

49

e�cient disjoint predicate as follows:

PK

(
((8i 2 V : "i0 , "i1), (8(i, j) 2 E : "(i,j)0 , "(i,j)1), ⇣, ⇢,!, ⌧, �, {↵k}|V

0|�1
k=0) :

Y

i2V

e

W

0
i
,

1Y

k=0

X
"ik
0k

!
Y

(i,j)2E

e

W(i,j),

1Y

k=0

X
"(i,j)k

(i,j)k

!
·

e
�
h
⇣
b
⇢
c
!
v
0�⌧

, X0

�
= e(v0� , X)^

e

Y

i2V

W
0
i
, X00

!
=
Y

i2V

e (Wi, Xi0) ^ "i[Ci] 2 ⌅V^

e (a00 ,WV`
) = e

0

@WV ,

|V 0|Y

k=0

X
mk

00

1

A e

0

@
|V 0|�1Y

k=0

a
↵k

00 , X0k

1

A ^ 1G 6=
|V 0|�1Y

k=0

a
↵k

00

)

where {mk} = MPEncode(8ī 2 V
0).

There is an alternate proof, namely, disjoint⇤ whose complexity is independent
of total system vertices |⌅V |. However, disjoint⇤ has to prove |V 0| ⇥ |V | secret
exponents in G1 instead of |V 0| as in disjoint. In order to simplify the notation, we
assume the vertex identifier ī, instead of the vertex label, for every V

0
ī
2 V

0 does
not appear in G. Prover can interact with the verifier to construct the disjoint

⇤

proof as follows:

PK

(
(8i 2 V : "i0 , "i1), (8(i, j) 2 E : "(i,j)0 , "(i,j)1), (8ī 2 V

0 : {↵i}|V |
i=1),

⇣, ⇢,!, ⌧, �) :

Y

i2V

e

Wi,

1Y

k=0

X
"ik

ik

!
Y

(i,j)2E

e

W(i,j),

1Y

k=0

X
"(i,j)k

(i,j)k

!
·

e
�
h
⇣
b
⇢
c
!
v
0�⌧

, X00

�
= e(v0� , X)^

8ī 2 V
0 :

Y

i2V

e

Wi,

1Y

k=0

X
"ik

ik

!
=

e

Y

i2V

Wī, X01X
ī

00

!
e

Y

i2V

a
↵i

i0
, X00

!
^ 1G 6= a

↵i

i0

)

where v
0
, {Wi,W(i,j)} are the public inputs and ⇣ = r ⇥ skU, ⇢ = s

0
,! = r, "i1 =

ri, "(i,j)1 = r(i,j), ⌧ = t
0 and � = y for the randomly chosen blinding factors

50

r, y, ri, r(i,j) 2 Z⇤
p
. The correctness for the second statement is as follows:

e

Y

i2V

Ci, X00

!
= e

Y

i2V

a
roi

Q
k2Vi

(x0+k)

i0
, X00

!

= e

Y

i2V

a
qi(x

0)(x0+ī)+r̄i

i0
, X00

!roi

= e

Y

i2V

a
qi(x

0)
i0

, X
x
0+ī

00

!roi

e

Y

i2V

a
r̄i

i0
, X00

!roi

= e

Y

i2V

a
roiqi(x

0)
i0

, X
x
0+ī

00

!
e

Y

i2V

a
roir̄i

i0
, X00

!

= e

Y

i2V

Wi, X1X
ī

0

!
e

Y

i2V

a
↵i

i0
, X00

!

where qi(x0) is the quotient polynomial and ↵i = r̄i is the remainder. Note that
the second last statement should not be stacked together or it conflicts with the
last statement. When the verifier queries �disjoint(E0) only, the prover can modify
the last statement accordingly to prove (E0 \G) = ;. Note that

Q
i2V

a
↵i

i0
in the

second statement is a Pedersen set commitment and Lemma 13 still holds. For
the completeness of this argument, we prove the perfectly hiding and binding
properties as below.

Lemma 14. The Pedersen set commitment of the disjoint⇤ statement is perfectly
hiding.

Proof. Given a Pedersen set commitment C = a
↵1
10 a

↵2
20 · · · a↵L

L0
, there are |Z⇤

p
|� 1

possible pairs of (↵1, (↵2, . . . ,↵L)) 6= (↵0
1, (↵

0
2, . . . ,↵

0
L
)) which can result in the

same C. Furthermore, for each committed set (↵2, . . . ,↵L), there is a unique ↵1

such that:

dloga10
(C) = ↵1

LY

j=2

dloga10
(aj0)↵j mod p

↵1 =
dloga10

(C)
Q

L

j=2 dloga10
(aj0)↵j

mod p

Since ↵1 is calculated independently of the committed set (↵2, . . . ,↵L), the latter
is perfectly hidden. ut

Lemma 15. The Pedersen set commitment of the disjoint
⇤ statement is binding

if the DLOG problem is hard.

Proof. Given a DLOG instance (g, h = g
x), we construct a challenger C that runs

the adversary A of a Pedersen set commitment scheme as the sub-routine to find

51

the solution x. C sets a10 = g and {ai0 = h
bi}L

i=1 for randomly chosen bi 2 Z⇤
p
.

C publishes {ai0}Li=0 as the public parameters for the Pedersen set commitment
scheme.

If an adversary can output a Pedersen set commitment C for two di↵erent
sets (A = {↵i}Li=0, A

⇤ = {↵⇤
i
}L
i=0) such that |A \A

⇤| � 2 and:

C = a
↵1
10 a

↵2
20 · · · a↵L

L0
= a

↵
⇤
1

10 a
↵

⇤
2

20 · · · a↵
⇤
L

L0

, g
↵1h

LP
i=1

bi↵i

= g
↵

⇤
1h

LP
i=1

bi↵
⇤
i

,

C can compute:

x =
↵1 � ↵

⇤
1

LP
i=1

bi(↵⇤
i
� ↵i)

mod p

to solve the DLOG problem. ut

From Table 3, we observe that the complexity of the disjoint
⇤ predicate is

faster than that of the disjoint predicate only when n
0 is small. Let the complexity

ratio [29] at 128-bit security for a scalar multiplication in G1 (M1) to a scalar
multiplication inG2, exponentiation inGT and pairing be 2, 6 and 9, respectively.
Assuming l = 1, the disjoint predicate has a total of (29m+ n

2
/2 + (127n)/2 +

2|⌅V |+5n0+89)M1 while disjoint⇤ has a total of (30m+(5n+32)n0+29n+27)M1.
Setting n = 100,m = 1000 and ⌅V = 1000, we get (5n0 + 42439)M1 for disjoint
and (532n0 + 8927)M1 for disjoint

⇤. As a result, as long as n
0 = |V 0| � 18,

disjoint
⇤ is slower than disjoint. On the other hand, at n = 1000,m = 100, we get

(5n0+589389)M1 for disjoint and (5032n0+35027)M1 for disjoint⇤ which pushes
the threshold to n

0 = |V 0| � 106. This shows that disjoint is suitable for graphs
with little vertices but large edges while disjoint

⇤ is the other way round.

7.6 edge(i, j)

The edge(i, j) statement is a special case of set proof such that the query is a
single edge identifier E0 = (i⇤, j⇤) as below:

PK

(
(8i 2 V : "i0 , "i1), (8(i, j) 2 E \ (i⇤, j⇤) : "(i,j)0 , "(i,j)1), ⇣, ⇢,!, ⌧, �) :

Y

i2V

e
�
W

0
i
, X

"i1
01 X

"i0
00

� Y

(i,j)2E\E0

e

⇣
W

0
(i,j), X

"(i,j)1
01 X

"(i,j)0
00

⌘
·

e(W 0
(i⇤,j⇤), X2X

i
⇤+j

⇤

1 X
i
⇤·j⇤

0)e
�
h
⇣
b
⇢
c
!
v
0�⌧

, X00

�
= e(v0� , X)

)

where {W 0
i
,W

0
(i,j)} and W

0
(i⇤,j⇤) =

Q|E(i⇤,j⇤)|�2
k=0 a

r
Q

w2fE (i⇤,j⇤)(x
0+w)

(i,j)k
are public

inputs. If E0
(i⇤,j⇤) 2 GU, it is W

0
(i⇤,j⇤) =

Q|E(i⇤,j⇤)|�2
k=0 a

o(i⇤,j⇤)r
Q

w2fE (i⇤,j⇤)(x
0+w)

(i,j)k
instead.

52

7.7 connected(i, j, `)

The connected(i, j, `) statement shows that two vertices i and j are connected
by ` edges. This is an extension of edge(i, j) statement, which is a simplified
` times edges within a set statement. The connected statement for ` edges E

0

connecting i and j is as below:

PK

(
(8i 2 V : "i0 , "i1), (8(i, j) 2 E \ E0} : "(i,j)0 , "(i,j)1), {"l,0}

`�1
l=2 , {"l,1}

`�1
l=1 ,

{"l,2}`l=1, ⇣, ⇢,!, ⌧, �) :
Y

i2V

e
�
W

0
i
, X

"i1
01 X

"i0
00

� Y

(i,j)2E\E0

e

⇣
W

0
(i,j), X

"(i,j)1
01 X

"(i,j)0
00

⌘
·

e

⇣
W

0
1, X

"1,2

02 (Xi
⇤

01)
"1,2X

"1,1

01 (Xi
⇤

00)
"1,1

⌘
e
�
W

0
2, X

"2,2

02 X
"1,1

01 X
"2,1

01 X
"2,0

00

�
· · ·

· · · e
�
W

0
`�1, X

"`�1,2

02 X
"`�2,1

01 X
"`�1,1

01 X
"`�1,0

00

�
e

⇣
W

0
`
, X

"`,2

02 X
"`�1,1

01 (Xj
⇤

01)
"`,2(Xj

⇤

00)
"`�1,1

⌘
·

e
�
h
⇣
b
⇢
c
!
v
0�⌧

, X00

�
= e(v0� , X)

)

where {W 0
i
,W

0
(i,j)} and W

0
1, . . . ,W

0
`
are public inputs. The details for the secret

exponents are listed below:

– "1,2 = "2,2 = · · · = "`,2 = r(i⇤,j⇤),
– "1,1 = r(i⇤,j⇤) · j1 = r(i⇤,j⇤) · i2,
– "2,1 = r(i⇤,j⇤) · j2,
– "2,0 = r(i⇤,j⇤) · i2j2,

. . .

– "`�1,1 = r(i⇤,j⇤) · j`�1 = r(i⇤,j⇤) · i`

such that all ` edges share the same randomness r(i⇤,j⇤) 2 Z⇤
p
.

Lemma 16. The randomization of the `-path in the connected predicate is per-
fectly hiding.

Proof. The proof is similar to that of Lemma 1. ut

7.8 isolated(i, j)

The isolated statement allows a prover to prove the possession of i and j as well
as their disjointness. In brief, a prover shows that his graph consists of a vertex
set and some sub-graphs that are represented by edge sets, with i and j fall
in di↵erent sub-graphs. Specifically, a prover proves the vertex composition to
separate the vertex set from the edge sets. Subsequently, a bi-partition variant
of edges is executed to show that i and j are disjoint. Let Ei⇤ and Ej⇤ = E \Ei⇤

53

represent the disjoint edge sets which consist of the queried i
⇤ and j

⇤ respectively.
We describe the isolated statement as the following protocol:

PK

(
((8i 2 V : "i0 , "i1), (8(i, j) 2 E : "(i,j)0 , "(i,j)1 , "(i,j)2), ⇣, ⇢,!, ⌧, �,

{↵k}
min(|Ei⇤ |,|Ej⇤ |)�1
k=0) :

Y

i2V

e
�
W

0
i
, X

"i1
01 X

"i0
00

� Y

(i,j)2E

e

W

0
(i,j),

2Y

k=0

X
"(i,j)k
0k

!
·

e
�
h
⇣
b
⇢
c
!
v
0�⌧

, X0

�
= e(v0� , X)^

vertices(V) ^ edges(Ei⇤) ^ i
⇤ 2 Ei⇤ ^ edges(Ej⇤) ^ j

⇤ 2 Ej⇤ ^ �disjoint(Ei⇤)(Ej⇤)

)
.

The isolated proof above is still valid if the prover runs edges without the
set membership proof for the edge labels. By the graph encoding setting, a
commitment with two vertex identifiers must be an edge. Furthermore, if the
base pool setting for disjoint is applied here, the vertices predicate can be skipped.
The simplified proof is as below:

PK

(
((8i 2 V : "i0 , "i1), (8(i, j) 2 E : "(i,j)0 , "(i,j)1 , "(i,j)2), ⇣, ⇢,!, ⌧, �,

{↵k}
min(|Ei⇤ |,|Ej⇤ |)�1
k=0) :

Y

i2V

e

Wi,

1Y

k=0

X
"ik

ik

!
Y

(i,j)2E

e

W

0
(i,j),

2Y

k=0

X
"(i,j)k
0k

!
·

e
�
h
⇣
b
⇢
c
!
v
0�⌧

, X0

�
= e(v0� , X)^

"(i,j)[C(i,j)El
i⇤
]`i⇤
li⇤=1 2 ⌅V ^ i

⇤ 2 Ei⇤^

"(i,j)[C(i,j)El
j⇤
]`i⇤
lj⇤=1 2 ⌅V ^ j

⇤ 2 Ej⇤^

�disjoint(Ej⇤)(Ei⇤)

)

where the last statement is changed to �disjoint(Ei⇤)(Ej⇤) if |Ej⇤ | > |Ei⇤ |.

8 Application Scenarios

While Groß proposed theoretical applications for graph signatures [18], e.g., in
encoding statements from arbitrary NP languages, and cloud topology security
applications [19] based on a graph grammar developed for virtualization security
assurance [3], we briefly introduce an application scenario to illustrate how to
employ the graph signature scheme and its proof system in practice.

54

Fig. 1. Example of a scale-free network graph with 200 vertices and 289 edges

First, we take for granted that there is infrastructure auditor engaging in
topology certification [17], based on a faithful synched graph representation of
a system of systems. In a virtualized infrastructure context, such graph repre-
sentations can be obtained from host [27] and topology [5, 4] security assurance
systems. How a specific assurance system obtains a faithful graph representation
of the infrastructure is outside the scope of this paper.

Given such a setup, (1) vertices represent physical machines and devices,
hypervisors, virtual machines, storage and network devices. (2) edges encode
hierarchical, VLAN and inter-VM RPC connections, (3) labels can encode a
wide range of properties incl. the types of vertices and edges, geo-location of
physical devices, OS image versions, owner, role, etc. Figure 1 represents a typical
structure of such a scale-free network. One could consider the leaves as virtual
workloads, the adjacent vertices as the respective hypervisors.

Initially, the infrastructure auditor signs the input graph representation of
the system, hence outputting a graph signature � to the infrastructure provider
as signature recipient. Subsequently, the infrastructure provider acts as prover
towards tenants in verifier roles. This enables the infrastructure provider to show,
for example,

(1) that the provider is in possession of a certified graph signature without
disclosing further information with the possession predicate,

55

(2) that all virtual machines of a tenant and co-located virtual machines of
unknown other tenants are based on OS image versions deemed secure, by
set membership proofs on labels, while keeping other tenants’ .

(3) that the geo-location of di↵erent systems of a tenant is in di↵erent countries
(encoded as labels) with the disjoint predicate (cf. [17]), thereby convincing
the tenant of backup redundancy,

(4) that a tenant’s workloads are segregated from other tenant’s workloads or
that a tenant’s mission-critical workloads are segregated from test systems
by use of the isolated predicate.

Hence, the graph signature scheme and its proof system enables the infrastruc-
ture provider to convince di↵erent verifiers that security properties relevant for
them are fulfilled, while keeping sensitive information confidential.

9 Performance

9.1 Computational Complexity

We list the show proofs complexity in Table 3 and that of the optimized version
from Appendix A in Table 4. In order to ease the presentation, we assume every
vertex Vi 2 V and edge Ei 2 E has the same label length l.

Table 3. Complexity for our proofs of knowledge statements.

Statement Point Add. (G1) Point Mult. (G1) Point Add. (G2) Point Mult. (G2) Mult. (GT) Pairing

vertices (l + 2)n+ 2(|⌅V |+ |⌅L|) +
n�1P
k=1

k

(l + 2)n+ 2(|⌅V |+ |⌅L|+ 1) +
n�1P
k=1

(k + 1)
5n+

nP
k=1

kl � 1 7n+
nP

k=1
(kl + 1) + 1 3n 3n+ 5

edges
(l + 3)m+ 2|⌅L|+

P`
i=1(2|⌅V |+

|Ei|�1P
k=1

k)

4m+ml + 2|⌅L|+
P`

i=1(2|⌅V |�

2m+
|Ei|�1P
k=1

(k + 1) + 1) + 1
7m+

P̀
i=1

|Ei|+
mP

k=1
kl � 1 9m+

P̀
i=1

(|Ei|+1)+
mP

k=1
(kl+1) 2m+

P̀
i=1

|Ei|+ 1 2m+
P̀
i=1

(|Ei|+1)+4

possession l(n+m) + 9 (l + 1)n+ (l + 2)m+ 15 3(n+m) 6(n+m) n+m n+m+ 2
set l(n�m

0) + (l+ 1)m+ (1� l)n0 + 9 (l+1)n+(1�l)n0+(l+2)m�lm
0+15 3(n+m)+(l�2)n0+(l�1)m0 6(n+m)+(l�5)n0+(l�4)m0

n+m n+m+ 2

disjoint (2l+2)n+ml+3n0+2|⌅V |+
n�1P
k=1

k+1
(2l + 2)n+ (l + 1)m+ 3n0 +

2|⌅V |+
n�1P
k=1

(k + 1) + 16
4n+ 3m+ n

0 7n+ 6m+ n
0 + 1 3n+m 3n+m+ 8

disjoint⇤ nl +ml +m+ n
0(nl + 3n� 3) + 9

n(l + 1) +m(l + 2) + n
0(n(l + 1) +

3n) + 15
n+m+ n

0 6(n+m) + n
0

n+m+ 2n0 � 1 n+m+ 2n0 + 2

cover l(n+n
00+m)+n

0+m
0+(l+1)m00+9

(l + 1)(n+ n
00) + (l + 2)(m+

m
00) + 2(n0 +m

0) + 15
3(n+m+ n

00 +m
00) + (l +

1)n0 + (l + 2)m0
6(n+m+ n

00 +m
00) + (l +

1)n0 + (l + 2)m0 n+m+ n
0 +m

0 � 1
n+m+ n

0 +m
0 +

n
00 +m

00 + 2
edge ln+ (l + 1)m+ 8 (l + 1)n+ (l + 2)m+ 14 3(n+m)� 1 6(n+m)� 4 n+m n+m+ 2
connected nl + (l + 1)m� `+ 9 (l + 1)n+ (l + 2)m� `+ 15 3(n+m) + 6` 6(n+m) + 3`+ 19 n+m n+m+ 2

isolated

nl +ml +m+
`i⇤P

li⇤=1
(2|⌅V |+

|El
i⇤ |�1P
k=1

k) +
`j⇤P

lj⇤=1
(2|⌅V |+

|El
j⇤ |�1P
k=1

k) +
`i⇤P

li⇤=1
(li⇤) +

`j⇤P
lj⇤=1

(lj⇤) + 3min(|Ei⇤ |, |Ej⇤ |) + 4

nl + n+ml + 2m+
`i⇤P

li⇤=1
(2|⌅V |�

|Ei⇤ |+
|El

i⇤ |�1P
k=1

(k + 1) + 1) +

`j⇤P
lj⇤=1

(2|⌅V |� |Ej⇤ |+
|El

j⇤ |�1P
k=1

(k +

1) + 1) + 3min(`i⇤ , `j⇤) + 15

3n+ 6m+
`i⇤P

li⇤=1
|Eli⇤ |+

`j⇤P
lj⇤=1

|Elj⇤ |+

max(|Ei⇤ |, |Ej⇤ |)�
min(|Ei⇤ |, |Ej⇤ |) + 2

6n+ 9m+
`i⇤P

li⇤=1
(|Eli⇤ |+

1) +
`j⇤P

lj⇤=1
(|Elj⇤ |+ 1) +

max(|Ei⇤ |, |Ej⇤ |)�
min(|Ei⇤ |, |Ej⇤ |) + 5

n+m+
`i⇤P

li⇤=1
|Eli⇤ |+

`j⇤P
lj⇤=1

|Elj⇤ |+ `i⇤ +

`j⇤ � 1

n+m+
`i⇤P

li⇤=1
(|Eli⇤ |+

1) +
`j⇤P

lj⇤=1
(|Elj⇤ |+

1) + `i⇤ + `j⇤ + 13

Note: l: label length, n: |V |, m: |E|, m0: |E0|, m1: |E1|, n0: |V 0|, m0: |E0|, n00: |V 0 � V |, m00: |E0 � E|, `: threshold, ⇤: the slower alternative.

56

Table 4. Complexity for our optimized proofs of knowledge statements.

Statement Point Add. (G1) Point Mult. (G1) Point Add. (G2) Point Mult. (G2) Mult. (GT) Pairing

vertices (l + 13)n+ 2(|⌅V |+ |⌅L|) +
n�1P
k=1

k � 5 (l+16)n+2(|⌅V |+2|⌅L|)+
n�1P
k=1

(k+1)+2 2n+
nP

k=1
kl � 1 n+

nP
k=1

(kl + 1) + 7 n+ 4 n+ 10

edges
8m+ml + 2|⌅V |+

P̀
i=1

(2(|Ei|+ |⌅V |) +
|Ei|�1P
k=1

k � 2) + 6
P̀
i=1

(|Ei|� 1)� 7

13m+ml + 2|⌅L|+
P̀
i=1

(2|⌅V |+
|Ei|�1P
k=1

(k + 1) + 8|Ei|+ 1) + 1

P̀
i=1

|Ei|+
mP

k=1
kl +m� 1

mP
k=1

(kl+1)+
P̀
i=1

(|Ei|+1)+9 m+ 3`+ 3 m+ 4`+ 7

possession (2l + 6)n+ (2l + 8)m� 1 (2l + 8)n+ (2l + 10)m+ 15 0 6 2 4

set
(2l + 4)n� (2l � 6)n0 + (2l + 6)m� (2l �
5)m0 + 5

(2l+ 8)n� (2l� 6)n0 + (2l+ 10)m� (2l�
8)m0 + 15

n
0 +m

0
n
0 +m

0 + 4 n
0 +m

0 + 1 n
0 +m

0 + 4

set#
(2l + 4)(n� n

0) + (2l + 6)(m�m
0) +

nmax(2n
0 + 2m0 � 1) + 5

(2l + 8)(n� n
0) + (2l + 10)(m�m

0) +
3nmax(n

0 +m
0) + 15

0 2 nmax + 1 nmax + 4

disjoint (l+14)n+ml+3n0 +2|⌅V |+
Pn�1

k=1 k� 9
2nl + 16n+ml +m+ 3n0 + |⌅V |+Pn�1

k=1 (k + 1) + 15
n+ 4m+ n

0
n+ 6m+ n

0 + 8 n+m+ 5 n+m+ 12

disjoint⇤ lm+ lnn
0 + ln+m+ 3nn0 � 2n0 + 9 n(l+1)+m(l+2)+n

0(n(l+1)+3n+1)+15 n+m+ n
0 6(n+m) n+m+ n

0
n+m+n

0 +3

cover
(2l + 6)(n+ n

00) + (2l + 8)(m+m
00) +

n
0 +m

0 � 6
(2l + 8)(n+ n

00) + (2l + 10)(m+m
00) +

2n0 + 2m0 + 15
n
0 +m

0
n
0 +m

0 + 8 n
0 +m

0 + 3 n
0 +m

0 + 6

cover#
(2l + 6)(n+ n

00) + (2l + 8)(m+m
00) +

nmax(2n
0 + 2m0 � 1)� 6

(2l + 8)(n+ n
00) + (2l + 10)(m+m

00) +
15 + nmax(2n

0 + n
0 + 2m0 +m

0)
0 6 3 + nmax 6 + nmax

edge (2l + 4)n+ (2l + 6)m� l � 3 (2l + 8)n+ (2l + 10)m� l + 6 2 8 3 5
connected (2l + 6)n+ (2l + 8)m� (l + 2)`+ 3 (2l + 8)n+ (2l + 10)m+ (3� l)`+ 17 0 9 5 7

isolated

nl +ml + 4m+
`i⇤P

li⇤=1
(2|Eli⇤ |+ 2|⌅V |+

|El
i⇤ |�1P
k=1

k � 2) +
`j⇤P

lj⇤=1
(2|Elj⇤ |+ 2|⌅V |+

|El
j⇤ |�1P
k=1

k � 2) + 3min(|Ei⇤ |, |Ej⇤ |) +

6
`i⇤P

li⇤=1
(|Eli⇤ |� 1) + 6

`j⇤P
lj⇤=1

(|Elj⇤ |� 1) + 1

nl+n+ml+11m+
`i⇤P

li⇤=1
(2|⌅V |+8|Eli⇤ |+

|El
i⇤ |�1P
k=1

(k+1)+1)+
`j⇤P

lj⇤=1
(2|⌅V |+8|Elj⇤ |+

|El
j⇤ |�1P
k=1

(k + 1) + 1) +
`i⇤P

li⇤=1
(li⇤ + 1) +

`j⇤P
lj⇤=1

(lj⇤ + 1) + 3(min(|Ei⇤ |, |Ej⇤ |)) + 15

3n+
P`

li⇤=1 |Eli⇤ |+P`
lj⇤=1 |Elj⇤ |+ 2

6n+
P̀

li⇤=1
(|Eli⇤ |+ 1) +

P̀
lj⇤=1

(|Elj⇤ |+ 1) +

max(|Ei⇤ |, |Ej⇤ |)�
min(|Ei⇤ |, |Ej⇤ |) + 14

n+ 4(`i⇤ +
`j⇤) + 2

n+ 5(`i⇤ +
`j⇤) + 16

Note: l: label length, n: |V |, m: |E|, m0: |E0|, m1: |E1|, n0: |V 0|, m0: |E0|, n00: |V 0 � V |, m00: |E0 � E|, `: threshold, ⇤: the slower alternative, #: the nmax alternative.

We compare the e�ciency of show proofs of our proposed graph signature to
that of Groß’ graph signature [18, 19] in Table 5. We first recall the notations

from Groß’ graph signature scheme. Let n be the total vertices and m  n(n�1)
2

be the total edges in a graph. Also, let k be the number of sets considered in
a statement where k  l  n and O(kl) = O(n). We follow the approach in
Groß’ work in computing the asymptotic complexity where we consider only the
complexity of the core computations to realize a statement. For instance, the
O(1) for edge in Groß’ signature does not include the complexity of possession,
and neither does ours.

Our graph signature outperforms Groß’ graph signature in some statements
because the set membership proofs in vertices and edges implicitly prove pair-wise
disjointness. This allows our graph signature to enjoy a more e�cient graph well-
formedness proof as well as realizing the disjoint statement using the set state-
ment instead of the more complicated partition statement [18, 19]. Our proofs
can be further optimized to reduce its complexity as shown in Appendix A. The
optimization transfers the computation cost from pairing to the point multipli-
cation in G1 for every statement and achieves better e�ciency. For instance,
the optimization on possession reduces n+m+2 pairings to only 4 while added
n(|fV(i)|+7)+m(|fE(i)|+8) point multiplications inG1. Moreover, Table 5 shows
that the optimization on set reduces the complexity from O(|V 0|) to O(nmax)
where nmax = max(|V 0

1 |, . . . , |V 0
|V 0||), a number significantly smaller than |V 0|

57

Table 5. E�ciency comparison for proofs of knowledge statements.

Statement
Groß [18, 19]

Ours

Non-optimized Optimized

Basis O Basis OGT
Basis OG1

possession - O(n+m) - OGT
(n+m) - OG1(n+m)

vertices possession O(n) set OGT
(n) set OG1(n)

edges possession O(m) set OGT
(m) set OG1(m)

set vertices O(n0) - OGT
(n0) - OG1(nmax)

disjoint vertices O(k2 + n) - OGT
(n0) - OG1(n

0)
cover vertices O(kl) - OGT

(n0 + n
00) - OG1(nmax + n

00)
partition vertices O(k2 + n) set OGT

(n) set OG1(n)

edge possession O(1) set OGT
(1) set OG1(1)

connected edges O(`) set OGT
(`) set OG1(`)

isolated edges O(m) edges OGT
(m) edges OG1(m)

Note: n: |V |, m  n(n�1)
2 , k  l  n, n0: |V 0|, n00: |V 0 � V |, `: threshold.

in the practice. Since a point multiplication operation is faster than a pairing,
whose operating time is comparable to a modular exponentiation in RSA, our
proposed graph signature scheme is more e�cient than Groß’ in general.

9.2 Implementation Benchmarks

We have implemented the MoniPoly graph signature scheme in Java, based on
the elliptic curve and pairing cryptography implementation of the Apache Mila-
gro Crypto Library (AMCL), v. 3.2. The implementation is based on the BLS461
curve and uses a 128-bit security parameter. The implementation realizes the key
generation, issuing and di↵erent predicate proof protocols in 16,767 lines of code.

For the presented performance experiments, we have generated scale-free
Internet autonomous-system (AS) alike graphs with the algorithm developed
by Elmokashfi et al. [15] with the Python library networkx, v. 2.5. Their graph
size was parametrized by the number of vertices, the number of edges being
a function thereof. These graphs capture characteristics of a range of natural
graph configurations of Internet systems. The vertex-to-edge ratio was typically
approximately 1:1.5. Hence, for instance, for the case of 400 vertices the graph
contained 551 edges, whereby the MoniPoly graph signature scheme encoded
951 graph elements (vertices+edges). The number of labels was fixed to 5 per
vertex and edge. We depicted such a graph of intermediate size in Figure 1
of Section 8. For each graph size specified for the experiment, we generated
and stored as reference sample a set of 10 graphs. For the isolation proofs, we
generated an additional random 3-vertex user graph as second input for the

58

proof system, constrained to be disjoined from the experiment graphs, that is,
fulfilling isolation by design.

Subsequently, we computed 10 warm-up rounds and then 100 evaluation
rounds of the issuing and proof system protocols per given graph size. The perfor-
mance evaluation was computed on an Intel Core i7-2600S CPU with 2.80GHz,
with 4 cores, while the experiment was restricted to a single core. The machine
had 8 GB RAM and was operating under Ubuntu 16.04 with kernel version 4.15
and the Oracle JDK v. 1.8.0 201.

● ● ●
●

●
●

● ● ● ● ● ●

0

200

400

600

10 50 100 200 300 400
Graph size (#vertices)

Ex
ec

ut
io

n
tim

e
(s

)

●

●

init.sign

ori.interm.sign

interm.sign

isolation

final.sign

pop

set

cover

disjoint

edge

connected

Fig. 2. Mean execution time of 100 runs of the MoniPoly graph signature issuing and
zero-knowledge proof systems, on BLS461 with 128-bit security

Figure 2 summarizes the results for all performance experiments, where each
datapoint constitutes the mean of the evaluated execution times. We observe
that the performance of all issuing protocols and the proof-system protocols
apart from isolation is a flat linear function of the graph size. Let us consider
issuing, non-isolation proofs and isolation proofs in turn.

Issuing. For a graph size of 10 vertices, the issuing took approximately 1.8
seconds. For a graph size of 400 vertices, the initial issuing took 15 seconds,
further issuing protocols were completed in less than 60 seconds.

Non-Isolation Proofs. For graphs with 10 vertices, all non-isolation proof pro-
tocols were executed less than one second. For 400-vertex graphs, the non-

59

isolation proof protocols all ran for approximately 20 seconds. For computing
zero-knowledge proofs of knowledge on a graph signature with nearly 1,000 ele-
ments with a realistic key size these performance results are encouraging.

Isolation Proofs. Considering the performance of the isolation proof protocol,
we observe that the execution time grows super-linearly. For a graph with 10
vertices, this proof executed in approximately 30 seconds. For a graph with 400
vertices, the isolation proof typically took less than 750 seconds, that is, less than
12.5 minutes. While the execution time is impacted by a number of pairings as
well, the true culprit for this is generation of and proof of representation of cu-
mulative products of edge sets of graph partitions to be isolated. Creating those
has a complexity of O(n2), where n is the number of edges in the corresponding
partition. Notably, use cases in which an infrastructure provider proves isolation
of the resources of a tenant from other tenants, such as proposed by Groß [19],
allow the provider to compute the signature proof of knowledge of the isolation
statement o✏ine, whereby the execution time of the isolation proof is less of an
issue.

10 Conclusion

In this paper, we proposed a SDH-based graph signature scheme based on
MoniPoly encoding. We rigorously proved the security of our graph signature
scheme in the standard model with tight reduction. Our graph signature scheme
provides more e�cient show proofs compared to that of the RSA-based graph
signature scheme.

Acknowledgment

This work was supported by the ERC Starting Grant CASCAde (GA no716980).

60

Bibliography

[1] Man Ho Au, Willy Susilo, and Yi Mu. Constant-size dynamic k-taa. In
Roberto De Prisco and Moti Yung, editors, Security and Cryptography for
Networks, pages 111–125, Berlin, Heidelberg, 2006. Springer Berlin Heidel-
berg.

[2] Mihir Bellare and Gregory Neven. Transitive signatures based on factoring
and rsa. In Advances in Cryptology–ASIACRYPT 2002, pages 397–414.
Springer, 2002.

[3] Soren Bleikertz and Thomas Groß. A virtualization assurance language
for isolation and deployment. In 2011 IEEE International Symposium on
Policies for Distributed Systems and Networks, pages 33–40. IEEE, 2011.

[4] Sören Bleikertz, Carsten Vogel, and Thomas Groß. Cloud Radar: near real-
time detection of security failures in dynamic virtualized infrastructures. In
Proceedings of the 30th Annual Computer Security Applications Conference
(ACSAC’14), pages 26–35. ACM, 2014.

[5] Sören Bleikertz, Carsten Vogel, Thomas Groß, and Sebastian Mödersheim.
Proactive security analysis of changes in virtualized infrastructures. In Pro-
ceedings of the 31th Annual Computer Security Applications Conference
(ACSAC’15), 2015.

[6] Manuel Blum. How to prove a theorem so no one else can claim it. In
Proceedings of the International Congress of Mathematicians, volume 1,
page 2, 1986.

[7] Dan Boneh and Xavier Boyen. Short signatures without random oracles and
the sdh assumption in bilinear groups. Journal of Cryptology, 21(2):149–
177, Apr 2008.

[8] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures.
In Matt Franklin, editor, Advances in Cryptology – CRYPTO 2004, pages
41–55, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

[9] Jan Camenisch and Thomas Groß. E�cient attributes for anonymous cre-
dentials. In Proceedings of the 15th ACM conference on Computer and
communications security, pages 345–356. ACM, 2008.

[10] Jan Camenisch and Thomas Groß. E�cient attributes for anonymous cre-
dentials. ACM Trans. Inf. Syst. Secur., 15(1):4:1–4:30, March 2012.

[11] Jan Camenisch and Anna Lysyanskaya. A signature scheme with e�cient
protocols. In Stelvio Cimato, Giuseppe Persiano, and Clemente Galdi, edi-
tors, Security in Communication Networks, pages 268–289, Berlin, Heidel-
berg, 2003. Springer Berlin Heidelberg.

[12] Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous
credentials from bilinear maps. In Matt Franklin, editor, Advances in Cryp-
tology – CRYPTO 2004, pages 56–72, Berlin, Heidelberg, 2004. Springer
Berlin Heidelberg.

[13] Ran Canetti, Omer Paneth, Dimitrios Papadopoulos, and Nikos Trian-
dopoulos. Verifiable set operations over outsourced databases. In Hugo

Krawczyk, editor, Public-Key Cryptography – PKC 2014, pages 113–130,
Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

[14] Sanjit Chatterjee and Alfred Menezes. On cryptographic protocols em-
ploying asymmetric pairings - the role of revisited. Discrete Applied
Mathematics, 159(13):1311 – 1322, 2011.

[15] Ahmed Elmokashfi, Amund Kvalbein, and Constantine Dovrolis. On the
scalability of bgp: The role of topology growth. IEEE Journal on Selected
Areas in Communications, 28(8):1250–1261, 2010.

[16] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing
but their validity or all languages in NP have zero-knowledge proof systems.
Journal of the ACM, 38(3):690–728, 1991.

[17] T. Groß and Ioannis Sfyrakis. Specification of the graph signa-
ture cryptographic library and the prismacloud topology certifi-
cation version 0.9.2. Newcastle University ePrint Archive, 2018.
https://www.ncl.ac.uk/media/wwwnclacuk/schoolofcomputingscience/files/trs/1523.pdf.

[18] Thomas Groß. Signatures and e�cient proofs on committed graphs and
np-statements. In Rainer Böhme and Tatsuaki Okamoto, editors, Financial
Cryptography and Data Security, pages 293–314, Berlin, Heidelberg, 2015.
Springer Berlin Heidelberg.

[19] Thomas R. Groß. E�cient certification and zero-knowledge proofs of knowl-
edge on infrastructure topology graphs. In Proceedings of the 6th Edition of
the ACM Workshop on Cloud Computing Security, CCSW ’14, pages 69–80,
New York, NY, USA, 2014. Association for Computing Machinery.

[20] IBM. Specification of the identity mixer cryptographic library, v. 2.3.40.
Specification, IBM Research, 2013.

[21] Eike Kiltz, Daniel Masny, and Jiaxin Pan. Optimal security proofs for signa-
tures from identification schemes. In Matthew Robshaw and Jonathan Katz,
editors, Advances in Cryptology – CRYPTO 2016, pages 33–61, Berlin, Hei-
delberg, 2016. Springer Berlin Heidelberg.

[22] Kalikinkar Mandal, Basel Alomair, and Radha Poovendran. Out-
sourcing graph databases with label-constrain query verification, 2015.
http://labs.ece.uw.edu/nsl/papers/GDB-full-15.pdf.

[23] Silvio Micali and Ronald L Rivest. Transitive signature schemes. In Topics
in Cryptology-CT–RSA 2002, pages 236–243. Springer, 2002.

[24] Charalampos Papamanthou, Roberto Tamassia, and Nikos Triandopoulos.
Optimal verification of operations on dynamic sets. In Phillip Rogaway,
editor, Advances in Cryptology – CRYPTO 2011, pages 91–110, Berlin, Hei-
delberg, 2011. Springer Berlin Heidelberg.

[25] Torben P. Pedersen. Non-interactive and information-theoretic secure ver-
ifiable secret sharing. In Joan Feigenbaum, editor, Advances in Cryptology
- CRYPTO ’91, 11th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 11-15, 1991, Proceedings, volume 576 of
Lecture Notes in Computer Science, pages 129–140. Springer, 1991.

[26] Sven Schäge. Tight proofs for signature schemes without random oracles.
In Kenneth G. Paterson, editor, Advances in Cryptology – EUROCRYPT
2011, pages 189–206, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

62

[27] J. Schi↵man et al. Cloud verifier: Verifiable auditing service for IaaS clouds.
In Proc. SERVICES, pages 239–246, 2013.

[28] Syh-Yuan Tan and Thomas Groß. Monipoly—an expressive q-SDH-based
anonymous attribute-based credential system. In To appear in proceedings
of ASIACRYPT 2020, May 2020.

[29] Syh-Yuan Tan and Thomas Groß. Monipoly—an expressive q-SDH-based
anonymous attribute-based credential system [extended version]. Cryptol-
ogy ePrint Archive Report 2020/587 (ia.cr/2020/587), IACR, May 2020.

[30] Y. Zhang, J. Katz, and C. Papamanthou. An expressive (zero-knowledge)
set accumulator. In 2017 IEEE European Symposium on Security and Pri-
vacy (EuroS P), pages 158–173, April 2017.

[31] Yupeng Zhang, Charalampos Papamanthou, and Jonathan Katz. Alitheia:
Towards practical verifiable graph processing. In In CCS, 2014.

[32] Yupeng Zhang, Charalampos Papamanthou, and Jonathan Katz. Verifi-
able graph processing. ACM Trans. Priv. Secur., 21(4):20:1–20:23, October
2018.

A Optimized Proofs

We present the optimized proofs for the proposed graph signature scheme. The
exponents which represent the encoded vertices and edges atG2 bases (Xik

, X(i,j)k)
in a pairing are moved to the G1 bases (Wi,W(i,j)). Therefore, every pairing can
now be compressed together by sharing the same Xik

, i.e., reduces the number
of pairings from linear to Wi, to linear to Xik

. For instance, the vertex decom-
position in the graph statement can be rewritten as:

Y

i2V

e

✓
a
oir

�1
i

Q
w2fV (il)

(x0+w)

i0
, X

ri(x
0+i)

00

◆
=
Y

i2V

e
�
W

0
i
, X

ri
01X

ri·i
00

�

=
Y

i2V

e
�
W

0
i
, X

ri
01

� Y

i2V

e
�
W

0
i
, X

rii

00

�

=
Y

i2V

e
�
W

0ri
i

, X01

� Y

i2V

e
�
W

0rii
i

, X00

�

= e

Y

i2V

W
0riu�1

1
i

, X
u1
01

!
e

Y

i2V

W
0riiu�1

0
i

, X
u0
00

!

where |V | pairings are compressed to only two pairings.

Lemma 17. The randomization in the optimization gives perfectly hiding prop-
erty.

Proof. The random exponents u0, u1 turns the GT elements

e

Y

i2V

W
0riu�1

1
i

, X01

!u1

e

Y

i2V

W
0riiu�1

0
i

, X00

!u0

into a Pedersen set commitment (Lemma 14) which is perfectly hiding. ut

63

A.1 bootstrap Proof

The bootstrap statement can be optimized as follows:

PK

(
(8i : {"il}1l=0, 8(i, j) : {"(i,j)l}

2
l=0, µ0, µ1, µ2) :

e

0

@C

Y

i2V

Ci

Y

(i,j)2E

C(i,j), X00

1

A =
1Y

k=0

e

Y

i2V

(W 0
i
Wi)

"ik , X
µk

0k

!
·

2Y

k=0

e

0

@
Y

(i,j)2E

(W 0
(i,j)W(i,j))

"(i,j)k , X
µk

0k

1

A^

e

0

@
Y

i2V

W
0
i

Y

(i,j)2E

W
0
(i,j), X00

1

A =
Y

i2V

e (Wi, Xi0)
Y

(i,j)2E

e
�
W(i,j), X(i,j)0

�
)

where the number of pairings are reduced from 2+2(|V |+ |E|) to 7+ |V |+ |E|.
We can further compress the proof to save another 3 pairings but we present it
in the current form for clarity purposes.

A.2 vertices Proof

Let V =
S
{V1, . . . , V`} be the vertex set in a graph G, the prover runs the

following protocol:

PK

⇢
({"l0 , "l1}`l=1, µ0, µ1) : e

Y

i2V

Ci, X00

!
= e

`Y

l=1

W
"i1
i

, X
µ1
01

!
e

`Y

l=1

W
"i0
i

, X
µ0
00

!
^

e (WV1 , X00) = e
�
a
"11
00 , X

µ1
01

�
e
�
a
"10
00 , X

µ0
00

�
^ e (a00 ,WL1) = e (W1, X00)^

e (WV2 , X00) = e
�
W

"21
V1

, X
µ1
01

�
e
�
W

"20
V1

, X
µ0
00

�
^

e (WV3 , X00) = e
�
W

"31
V2

, X
µ1
01

�
e
�
W

"30
V2

, X
µ0
00

�
^ · · ·

· · · ^ e (a00 ,WV`
) = e

⇣
W

"`1
V`�1

, X
µ1
01

⌘
e

⇣
W

"`0
V`�1

, X
µ0
00

⌘
^

e

0

@
|⌅V |Y

k=0

a
mVk

0k
, X00

1

A = e
�
W⌅V\V ,WV`

�
^

e (a00 ,WL2) = e (W2,WL1) ^ e (a00 ,WL3) = e (W3,WL2)^

· · · ^ e (a00 ,WL`
) = e

�
W`,WL`�1

�
^ e

0

@
|⌅L|Y

k=0

a
mLk

0k
, X00

1

A = e
�
W⌅L\fV(V),WL`

�

�

64

and the correctness can be observed from the following:

e(Cil
, X00) = e

✓
a
ol(x

0+il)
Q

w2fV (il)
(x0+w)

00 , X00

◆

= e

✓
a
ol·r�1

l

Q
w2fV (il)

(x0+w)

00 , X
rl(x

0+il)
00

◆

= e
�
Wl, X

rl
01X

rlil
00

�

= e(W
rlu

�1
1

l
, X

u1
01)e(W

rlilu
�1
0

l
, X

u0
00)

= e
�
W

"l1
l

, X
µ1
01

�
e
�
W

"l0
l

, X
µ0
00

�

and,

e (WVl
, X00) = e

✓
a
rl(x

0+il)
Q

l�1
k=1 rk(x

0+ik)
00 , X00

◆

= e

✓
a

Q
l�1
k=1 rk(x

0+lk)
00 , X

rl(x
0+il)

00

◆

= e

⇣
WVl�1 , X

rlx
0

01 X
rlil
00

⌘

= e

⇣
W

rlu
�1
1

Vl�1
, X

u1
01

⌘
e

⇣
W

rlilu
�1
0

Vl�1
, X

u0
00

⌘

= e

⇣
W

"l1
Vl�1

, X
µ1
01

⌘
e

⇣
W

"l0
Vl�1

, X
µ0
00

⌘

and,

e (a00 ,WLl
) = e

✓
a00 , X

ol·r�1
l

Q
w2fV (il)

(x0+w)
Q

l�1
k=1 ok·r�1

k

Q
w2fV (ik)(x

0+w)

00

◆

= e

✓
a
ol·r�1

l

Q
w2fV (il)

(x0+w)

00 , X

Q
l�1
k=1 ok·r�1

k

Q
w2fV (ik)(x

0+w)

00

◆

= e
�
Wl,WLl�1

�

where {mVk} = MPEncode(⌅V), {mLVk
} = MPEncode(⌅LV),Wl =

Q|fV(il)|
k=0 a

mlk

0k
,

"l0 = rlilu
�1
0 , "l1 = rlu

�1
1 and {mlk

} = ol · r�1
l

⇥MPEncode(fV(il)) for randomly
selected ol, rl, u1 2 Z⇤

p
. The public inputs (W1, . . . ,W`) are witnesses for the ver-

tex labels, (WV1 , . . . ,WV`
,W⌅V\V) are witnesses for the cumulative product of

vertex identifiers while (WL1 , . . . ,WL`
,W⌅L\fV(V)) are witnesses for the cumu-

lative product of vertex labels. Subsequently, simplifying the pairing notations

65

in the proof above gives:

PK

⇢
({"l0 , "l1}`l=1, µ0, µ1) : e

Y

i2V

Ci, X00

!
=

1Y

k=0

e

`Y

l=1

W
"lk

l
, X

µk

0k

!
^

e

0

@
|⌅V |Y

k=0

a
mVk

0k

`�1Y

l=1

WVl
, X00

1

A =

1Y

k=0

e

`Y

l=1

W
"lk

Vl�1
, X

µk

0k

!
e
�
a
�1
00 W⌅V\V ,WV`

�
^

e

0

@
|⌅L|Y

k=0

a
mLk

0k
, X00

1

A e

a00 ,

`Y

l=1

WLl

!
=

`Y

l=1

e
�
Wl,WLl�1

�
e
�
W⌅L\fV(V),WL`

��

as the vertices(V) statement where WV0 = a00 . Notice that this optimization
decreases the number of pairing in vertices(V) from 5 + 3n into 10 + n only.

A.3 edges Proof

Let E =
S
{E1, . . . , E`} be the edge set in a graph G, the protocol below estab-

lishes the optimized statement edges(E):

PK

⇢
(8(i, j) 2 E : "(i,j)0 , "(i,j)1 , "(i,j)2 , µ0, µ1, µ2) :

e

0

@
Y

(i,j)2E

C(i,j), X00

1

A =
2Y

k=0

e

0

@
Y

(i,j)2E

W
"(i,j)k

(i,j) , X
µk

0k

1

A^

e

0

@
`Y

l=1

0

@
|⌅V |Y

k=0

a
mVk

0k

|El|�1Y

wl=1

WEwl

1

A , X00

1

A =

`Y

l=1

2Y

k=0

e

0

@
|El|Y

wl=1

W
"(i,j)k
Ew1�1

, X
µk

0k

1

A e

⇣
a
�1
00 W⌅V\El

,WE|El|

⌘
^

e

0

@
|⌅L|Y

k=0

a
mLk

0k
, X00

1

A e

0

@a00 ,

(`�2,`�1)Y

l=(2,3)

WLl

1

A =

e
�
W(2,3), X00

� (`�2,`�1)Y

l=(4,5)

e
�
Wl,WLl�1

�
e
�
W⌅L\fE(E1),WL(`�2,`�1)

��

and can be rewritten as:

66

PK

⇢
(8(i, j) 2 E : "(i,j)0 , "(i,j)1 , "(i,j)2 , µ0, µ1, µ2) :

e

0

@
Y

(i,j)2E

C(i,j), X00

1

A =
2Y

k=0

e

0

@
Y

(i,j)2E

W
"(i,j)k

(i,j) , X
µk

0k

1

A^

"(i,j)[C(i,j)E1
] 2 ⌅V ^ · · · ^ "(i,j)[C(i,j)El

] 2 ⌅V^

W(i,j)[C(i,j)] 2 ⌅L

�

for undirected acyclic graph. On the other hand, the proof for a directed acyclic
graph is as follows:

PK

⇢
((8(i, j, j) 2 E : "(i,j,j)0 , "(i,j,j)1 , "(i,j,j)2 , "(i,j,j)3 , "(i,j)0 , "(i,j)1 , "(i,j)2 , "j0 , "j1),

µ0, µ1, µ2, µ3) :

e

0

@
Y

(i,j,j)2E

C(i,j,j), X00

1

A =
3Y

k=0

e

0

@
Y

(i,j,j)2E

W
"(i,j,j)k

(i,j,j) , X
µk

0k

1

A^

W(i,j,j)[C(i,j,j)] 2 ⌅L^
3Y

k=0

e

0

@
Y

(i,j,j)2E

a
"(i,j,j)k
00 , X0k

1

A =
1Y

k=0

e

0

@
Y

(i,j,j)2E

W
"jk

(i,j), X
µk

0k

1

A^

W(i,j)[C(i,j,j)E1
] 2 ⌅V ^ · · · ^W(i,j)[C(i,j,j)El

] 2 ⌅V ^ "j [C(i,j,j)] 2 ⌅V

�

where we also prove the extra vertex identifiers in every edge identifier of a
directed acyclic graph. Similar to the original version, the optimized proof above
is applicable to the directed cyclic graph.

A.4 Intermediary Signing

The optimized intermediary signing protocol uses the optimized proof of repre-
sentation during the first step:

1. User randomly selects r1, y, oi1 , o(i,j)1 , ri, r(i,j),µ0,µ1
2 Z⇤

p
and interacts with

the signer to prove the possession of �init and the representation of his hidden

67

graph GU:

PK

⇢
((8i 2 VU : "i0 , "i1 , "i), (8(i, j) 2 EU : "(i,j)0 , "(i,j)1 , "(i,j)),

⇣, ⇢,!, ⌧, �, µ0, µ1) :

e
�
C1C2c

!
v
0�⌧

, X00

�
= e(v0� , X) ^

C1C2 = h
⇣
b
⇢
Y

i2VU

C
"i

i

Y

(i,j)2EU

C
"(i,j)

(i,j) ^

e

0

@
Y

i2VU

Ci

Y

(i,j)2EU

C(i,j), X00

1

A =

1Y

k=0

e

Y

i2VU

W
0"ik
i

Y

i2EU

W
0"(i,j)k
(i,j) , X

µk

0k

!�

where "i1 = riµ
�1
1 , "i0 = riµ

�1
0 i, "(i,j)1 = r(i,j)µ

�1
1 , "(i,j)1 = r(i,j)µ

�1
0 i while

the witnesses are

W
0
i
= a

oi1r
�1
i

Q
w2fV (i)(x

0+w)

i0

and

W
0
(i,j) = a

o(i,j)1
r
�1
(i,j)

(x0+j)
Q

w2fE (i,j)(x
0+w)

(i,j)0
.

The same changes also appear in the final signing protocol.

A.5 Proof of Possession

The optimized proof for the possession statement is as follows:

PK

(
(8i 2 V : "i0 , "i1), (8(i, j) 2 E : "(i,j)0 , "(i,j)1), ⇣, ⇢,!, ⌧, �, µ0, µ1) :

1Y

k=0

e

0

@
Y

i2V

W
0"ik
i

Y

(i,j)2E

W
0"(i,j)k
(i,j) , X

µk

0k

1

A e
�
h
⇣
b
⇢
c
!
v
0�⌧

, X00

�
= e(v0� , X)

)

where only 4 pairings are involved, instead of |V |+ |E|+ 2 pairings.

68

A.6 set Proof

The optimized set proof is as follows:

PK

(
((8i 2 V \ V 0 : "i0 , "i1), (8(i, j) 2 E \ E0 : "(i,j)0 , "(i,j)1), ⇣, ⇢,!, ⌧, �, µ0, µ1) :

1Y

k=0

e

0

@
Y

i2V \V 0

W
0"ik
i

Y

(i,j)2E\E0

W
0"(i,j)k
(i,j) , X

µk

0k

1

A ·

Y

i2V 0

e

0

@W
0
i
,

|V 0
i
|Y

k=0

X
mik

0k

1

A
Y

(i,j)2E0

e

0

@W
0
(i,j),

|E0
(i,j)|Y

k=0

X
m(i,j)k
0k

1

A ·

e
�
h
⇣
b
⇢
c
!
v
0�⌧

, X00

�
= e(v0� , X)

)

where {mij
} = MPEncode(V 0

i
), {m(i,j)j} = MPEncode(E0

(i,j)), ⇣ = r ⇥ skU, ⇢ =

s
0
,! = r, "i1 = ri, "(i,j)1 = r(i,j), ⌧ = t

0
, � = y for the randomly chosen blinding

factors r, y, ri, r(i,j) 2 Z⇤
p
.

Noticed that the second line in the set proof above is the same as that
in the original proof. If we apply the optimization mechanism on it, we can
compress the |V 0| + |E0| pairings into a possibly smaller number of pairings
which is linear to the size of the largest encoded vertex or edge in G0. Let
nmax = max(max(|V 0

1 |, . . . , |V 0
|V 0||),max(|E0

1|, . . . , |E0
|E0||)), if nmax < |G0|, the

verifier can choose to verify the set proof as below:

PK

(
((8i 2 V \ V 0 : "i0 , "i1), (8(i, j) 2 E \ E0 : "(i,j)0 , "(i,j)1), ⇣, ⇢,!, ⌧, �, µ0, µ1) :

1Y

k=0

e

0

@
Y

i2V \V 0

W
0"ik
i

Y

(i,j)2E\E0

W
0"(i,j)k
(i,j) , X

µk

0k

1

A ·

nmaxY

k=0

e

0

@
Y

i2V 0

W
0mik

i

Y

(i,j)2E0

W
0m(i,j)k

(i,j) , X0k

1

A ·

e
�
h
⇣
b
⇢
c
!
v
0�⌧

, X00

�
= e(v0� , X)

)

69

where mik
= 0,m(i,j)k = 0 whenever |V 0

i
| < k and |E0

(i,j)| < k, respectively. The

correctness for G0 can be verified from the following:

e

0

@
Y

i2V 0

Ci

Y

(i,j)2E0

C(i,j), X00

1

A

= e

0

@
Y

i2V 0

a
r(x0+i)

Q
w2fV (i)(x

0+w)

i0

Y

(i,j)2E0

a
r(x0+i)(x0+j)

Q
w2fE (i,j)(x

0+w)

(i,j)0
, X00

1

A

=
Y

i2V 0

e

✓
a
r

i0
, X

(x0+i)
Q

w2fV (i)(x
0+w)

00

◆ Y

(i,j)2E0

e

✓
a
r

(i,j)0
, X

(x0+i)(x0+j)
Q

w2fE (i,j)(x
0+w)

00

◆

=
Y

i2V 0

e

0

@W
0
i
,

|V 0
i
|Y

k=0

X
mik

0k

1

A
Y

(i,j)2E0

e

0

@W
0
(i,j),

|E0
(i,j)|Y

k=0

X
m(i,j)k
0k

1

A

=
Y

i2V 0

|V 0
i
|Y

k=0

e

⇣
W

0mik

i
, X0k

⌘ Y

(i,j)2E0

|E0
(i,j)|Y

k=0

e

⇣
W

0m(i,j)k

(i,j) , X0k

⌘

=

max(|V 0
1 |,...,|V

0
|V 0||)Y

k=0

e

Y

i2V 0

W
0mik

i
, X0k

!max(|E0
1|,...,|E

0
|E0||)Y

k=0

e

0

@
Y

(i,j)2E0

W
0m(i,j)k

(i,j) , X0k

1

A

=
nmaxY

k=0

e

0

@
Y

i2V 0

W
0mik

i

Y

(i,j)2E0

W
0m(i,j)k

(i,j) , X0k

1

A

and we have {W 0
i
= a

oir

i0
,W

0
(i,j) = a

o(i,j)r

(i,j)0
} if {V 0

i
, E

0
(i,j)} 2 GU.

A.7 cover Proof

The optimized protocol can be executed as follows:

PK

(
(8i 2 V : "i0 , "i1), (8(i, j) 2 E : "(i,j)0 , "(i,j)1), (8i 2 V

0 � V : "i0 , "i1),

(8(i, j) 2 E
0 � E : "(i,j)0 , "(i,j)1), ⇣, ⇢,!, ⌧, �, µ0, µ1) :

1Y

k=0

e

0

@
Y

i2V

W
0"ik
i

Y

(i,j)2E

W
0"(i,j)k
(i,j) , X

µk

0k

1

A e
�
h
⇣
b
⇢
c
!
v
0�⌧

, X00

�
= e(v0� , X)^

1Y

k=0

e

0

@
Y

i2V 0

W
0"ik
i

Y

(i,j)2E0

W
0"(i,j)k
(i,j) , X

µk

0k

1

A =

Y

i2V 0

e

0

@W
00
i
,

|V 0
i
|Y

k=0

X
mik

0k

1

A
Y

(i,j)2E0

e

0

@W
00
(i,j),

|E0
(i,j)|Y

k=0

X
m(i,j)k
0k

1

A
)

70

where {mik
} = MPEncode(V 0

i
), {m(i,j)k} = MPEncode(E0

(i,j)), ⇣ = r ⇥ skU, ⇢ =

s
0
,! = r, "i1 = riu

�1
1 , "(i,j)1 = r(i,j)u

�1
1 , ⌧ = t

0
, � = y, µ0 = u0, µ1 = u1 for

the randomly chosen blinding factors r, y, ri, r(i,j), u0, u1 2 Z⇤
p
. If G0 2 GU and

nmax < |G0| where nmax = max(max(|V 0
1 |, . . . , |V 0

|V 0||),max(|E0
1|, . . . , |E0

|E0||)),
the verifier can replace the right hand side of the last statement with

nmaxY

k=0

e

0

@
Y

i2V 0

W
00mik

i

Y

(i,j)2E0

W
00m(i,j)k

(i,j) , X0k

1

A

during verification.

A.8 disjoint Proof

Prover can interact with the verifier to construct the optimized disjoint proof as
follows:

PK

(
((8i 2 V : "i0 , "i1), (8(i, j) 2 E : "(i,j)0 , "(i,j)1), ⇣, ⇢,!, ⌧, �, µ0, µ1, {↵k}|V

0|�1
k=0) :

1Y

k=0

e

Y

i2V

W
0"ik
i

, X
µk

0k

!
Y

(i,j)2E

e

W(i,j),

1Y

k=0

X
"(i,j)k

(i,j)k

!
·

e
�
h
⇣
b
⇢
c
!
v
0�⌧

, X0

�
= e(v0� , X)^

e

Y

i2V

W
0
i
, X00

!
=
Y

i2V

e (Wi, Xi0) ^ "i[Ci] 2 ⌅V^

e (a00 ,WV`
) = e

0

@WV ,

|V 0|Y

k=0

X
mk

00

1

A e

0

@
|V 0|�1Y

k=0

a
↵k

00 , X00

1

A^

1G 6= WV ^ 1G 6=
|V 0|�1Y

k=0

a
↵k

00

)

71

where {mk} = MPEncode(8ī 2 V
0). Next, the optimized disjoint

⇤ proof is as
follows:

PK

(
(8i 2 V : "i0 , "i1), (8(i, j) 2 E : "(i,j)0 , "(i,j)1), (8ī 2 V

0 : {↵i}|V |
i=1),

⇣, ⇢,!, ⌧, �) :

Y

i2V

e

Wi,

1Y

k=0

X
"ik

ik

!
Y

(i,j)2E

e

W(i,j),

1Y

k=0

X
"(i,j)k

(i,j)k

!
·

e
�
h
⇣
b
⇢
c
!
v
0�⌧

, X00

�
= e(v0� , X)^

8ī 2 V
0 :

Y

i2V

e

Wi,

1Y

k=0

X
"ik

ik

!
=

e

Y

i2V

Wi, X01

!
e

0

@

Y

i2V

Wi

!ī

a
↵i

i,0, X00

1

A ^ 1G 6= a
↵i

i0

)

where v
0
, {Wi,W(i,j)} are the public inputs and ⇣ = r ⇥ skU, ⇢ = s

0
,! = r, "i1 =

ri, "(i,j)1 = r(i,j), ⌧ = t
0 and � = y for the randomly chosen blinding factors

r, y, ri, r(i,j) 2 Z⇤
p
.

The right hand side of second statement in the original proof requires 2|V 0|
pairings yet this optimized version requires only 1 + |V 0| pairings. This is be-
cause e

�Q
i2V

Wi, X01

�
can be accumulated for every ī while the |V 0| elements of

e

⇣�Q
i2V

Wi

�ī
a
↵i

i,0, X00

⌘
are su�cient to avoid the conflicts with the last state-

ments.

Table 4 shows a similar complexity relationship for disjoint
⇤ and disjoint

predicates. Using the same setting from Section 7.5, the disjoint
⇤ has a total of

(30m+ (5n+23)n0 +29n+18)M1 while disjoint has a total of (27m+1/2n(n+
71) + |⌅V | + 5n0 + 192)M1. At n = 100,m = 1000, we get (5n0 + 36742)M1 for
disjoint and (516n0 +32942)M1 for disjoint⇤. The disjoint predicate is faster than
disjoint

⇤ when n
0 = |V 0| � 7. On the other hand, at n = 1000,m = 100, we get

(5n0 + 539392)M1 for disjoint and (5016n0 + 32042)M1 for disjoint
⇤ which then

produces a threshold n
0 � 101.

72

A.9 edge(i, j)

Let E0 = (i⇤, j⇤), the edge(i, j) statement can be proved as below:

PK

(
(8i 2 V : "i0 , "i1), (8(i, j) 2 E \ (i⇤, j⇤) : "(i,j)0 , "(i,j)1), ⇣, ⇢,!, ⌧, �, µ0, µ1) :

1Y

k=0

e

0

@
Y

i2V

W
0"ik
i

Y

(i,j)2E\E0

W
0"(i,j)k
(i,j) , X

µk

0k

1

A e(W 0
(i⇤,j⇤), X2X

i
⇤+j

⇤

1 X
i
⇤·j⇤

0)·

e
�
h
⇣
b
⇢
c
!
v
0�⌧

, X00

�
= e(v0� , X)

)

where {W 0
i
,W

0
(i,j)} and W

0
(i⇤,j⇤) are public inputs.

A.10 connected(i, j, `)

The optimized connected statement for ` edges E0 connecting i and j is as below:

PK

(
(8i 2 V : "i0 , "i1), (8(i, j) 2 E \ E0 : "(i,j)0 , "(i,j)1), {"l,0}

`

l=1, {"l,1}`l=1, "1,2,

{"l,3}`l=1, ⇣, ⇢,!, ⌧, �, µ0, µ1) :

1Y

k=0

e

0

@
Y

i2V

W
0"ik
i

Y

(i,j)2E\E0

W
0"(i,j)k
(i,j) , X

µk

0k

1

A ·

e

(W 0i⇤

1)"1,0
`�1Y

l=2

W
0"l,0
l

(W 0j⇤
`

)"`,0 , Xµ0
00

!
·

e

(W 0i⇤

1)"1,2W
0"1,1
1

`�1Y

l=2

W
0"l�1,1

l
W

0"l,1
l

W
0"`�1,1

`
(W 0j⇤

`
)"`,1 , Xµ1

01

!
·

e

`Y

l=1

W
0"l,3
l

, X
µ2
02

!
e
�
h
⇣
b
⇢
c
!
v
0�⌧

, X00

�
= e(v0� , X)

)

73

where {W 0
i
,W

0
(i,j)} and W

0
1, . . . ,W

0
`
are public inputs. The correctness can be

verified from the following:

e

⇣
W

0
1, X

"1,3

02 (Xi
⇤

01)
"1,2X

"1,1

01 (Xi
⇤

00)
"1,0

⌘
e
�
W

0
2, X

"2,3

02 X
"1,1

01 X
"2,1

01 X
"2,0

00

�
· · ·

· · · e
�
W

0
`�1, X

"`�1,3

02 X
"`�2,1

01 X
"`�1,1

01 X
"`�1,0

00

�
e

⇣
W

0
`
, X

"`,3

02 X
"`�1,1

01 (Xj
⇤

01)
"`,1(Xj

⇤

00)
"`,0

⌘

= e

⇣
W

0"1,3
1 , X

u2
02

⌘
e

⇣
(W 0i⇤

1)"1,2W
0"1,1
1 , X

u1
01

⌘
e

⇣
(W 0i⇤

1)"1,0 , Xu0
00

⌘
·

e

⇣
W

0"2,3
2 , X

u2
02

⌘
e

⇣
W

0"1,1
2 W

0"2,1
2 , X

u1
01

⌘
e

⇣
W

0"2,0
2 , X

u0
00

⌘
· · ·

· · · e
⇣
W

0"`�1,3

`�1 , X
u2
02

⌘
e

⇣
W

0"`�2,1

`�1 W
0"`�1,1

`�1 , X
u1
01

⌘
e

⇣
W

0"`�1,0

`�1 , X
u0
00

⌘
·

e

⇣
W

0"`,3
`

, X
u2
02

⌘
e

⇣
W

0"`�1,1

`
(W 0j⇤

`
)"`,2 , Xu1

01

⌘
e

⇣
(W 0j⇤

`
)"`,0 , Xu0

00

⌘

= e

(W 0i⇤

1)"1,0
`�1Y

l=2

W
0"l,0
l

(W 0j⇤
`

)"`,0 , Xu0
00

!
·

e

(W 0i⇤

1)"1,2W
0"1,1
1

`�1Y

l=2

W
0"l�1,1

l
W

0"l,1
l

W
0"`�1,1

`
(W 0j⇤

`
)"`,1 , Xu1

01

!
e

`Y

l=1

W
0"l,3
l

, X
u2
02

!

which is an extension of the original connected proof. This optimization reduces
the number of pairings used to represent the connection from ` to only 3 pairings.

A.11 isolated(i, j)

Let E0 = ((i⇤, j), (i, j⇤)), the optimized isolated proof is as below:

PK

(
((8i 2 V : "i0 , "i1), (8(i, j) 2 E : "(i,j)0 , "(i,j)1 , "(i,j)2), ⇣, ⇢,!, ⌧, �,

µ0, µ1, µ2, {↵k}
min(|Ei⇤ |,|Ej⇤ |)�1
k=0) :

Y

i2V

e

W

0
i
,

1Y

k=0

X
"ik

ik

!
2Y

k=0

e

0

@
Y

(i,j)2E

W
0"(i,j)k
(i,j) , X

µk

0k

1

A ·

e
�
h
⇣
b
⇢
c
!
v
0�⌧

, X0

�
= e(v0� , X)^

"(i,j)[C(i,j)El
i⇤
]`i⇤
li⇤=1 2 ⌅V ^ i

⇤ 2 Ei⇤^

"(i,j)[C(i,j)El
j⇤
]
`j⇤

lj⇤=1 2 ⌅V ^ j
⇤ 2 Ej⇤^

�disjoint(Ej⇤)(Ei⇤)

)

74

and the expanded form is as follows:

PK

(
((8i 2 V : "i0 , "i1), (8(i, j) 2 E : "(i,j)0 , "(i,j)1 , "(i,j)2), ⇣, ⇢,!, ⌧, �, µ0, µ1, µ2,

{↵k}
min(|Ei⇤ |,|Ej⇤ |)�1
k=0) :

Y

i2V

e

W

0
i
,

1Y

k=0

X
"ik

ik

!
2Y

k=0

e

0

@
Y

(i,j)2E

W
0"(i,j)k
(i,j) , X

µk

0k

1

A ·

e
�
h
⇣
b
⇢
c
!
v
0�⌧

, X0

�
= e(v0� , X)^

e

0

@
`i⇤Y

li⇤=1

0

@
|⌅V |Y

k=0

a
mVk

0k

|El
i⇤ |�1Y

wl
i⇤ =1

WEwl
i⇤

1

A , X00

1

A =

`i⇤Y

li⇤=1

2Y

k=0

e

0

@
|El

i⇤ |Y

wl
i⇤ =1

W
"(i,j)k
Ewl

i⇤
�1
, X

µk

0k

1

A e

⇣
a
�1
00 W⌅V\El

i⇤
,WE|El

i⇤
|

⌘
^

e

0

@
`i⇤Y

li⇤=1

W
0
El

i⇤
, X00

1

A =
`i⇤Y

li⇤=1

e

⇣
W

0
El

i⇤�1
,WE|El

i⇤
|

⌘
^

e

⇣
W

0
E`

i⇤
, X00

⌘
= e

⇣
Wi⇤ , X01X

i
⇤

00

⌘
^

e

0

@
`j⇤Y

lj⇤=1

0

@
|⌅V |Y

k=0

a
mVk

0k

|El
j⇤ |�1Y

wl
j⇤ =1

WEwl
j⇤

1

A , X00

1

A =

`j⇤Y

lj⇤=1

2Y

k=0

e

0

@
|El

j⇤ |Y

wl
j⇤ =1

W
"(i,j)k
Ewl

j⇤
�1
, X

µk

0k

1

A e

✓
a
�1
00 W⌅V\El

j⇤
,WE|El

j⇤
|

◆
^

e

0

@
`j⇤Y

lj⇤=1

W
0
El

j⇤
, X00

1

A =

`j⇤Y

lj⇤=1

e

✓
W

0
El

j⇤�1
,WE|El

j⇤
|

◆
^

e

⇣
W

0
E`

j⇤
, X00

⌘
= e

⇣
Wj⇤ , X01X

j
⇤

00

⌘
^

e

⇣
W

0
E`

i⇤
, X00

⌘
= e

⇣
W

0
E`

j⇤
, W̄j⇤

⌘
e

0

@
|Ej⇤ |�1Y

k=0

a
↵k

00 , X00

1

A^

1G 6=
|Ej⇤ |�1Y

k=0

a
↵k

00

)
.

75

If |Ej⇤ | > |Ei⇤ |, the last three statements are changed to:

e

⇣
W

0
E`

j⇤
, X00

⌘
= e

⇣
W

0
E`

i⇤
, W̄i⇤

⌘
e

0

@
|Ei⇤ |�1Y

k=0

a
↵k

00 , X00

1

A^

1G 6=
|Ei⇤ |�1Y

k=0

a
↵k

00 .

76

